Search results for: Building simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4469

Search results for: Building simulation

299 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences

Authors: Tamer ElSerafi

Abstract:

In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.

Keywords: Sustainable mobility, urban mobility, mobility management, historic districts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
298 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
297 Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills

Authors: Yunjia Wang, Zhihong Zhao, Erxiang Song

Abstract:

Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.

Keywords: Rockfills, creep behavior, particle crushing, discrete element method, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
296 Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator

Authors: Inder K. Purohit, M. Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim

Abstract:

A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene.

Keywords: Adaptive progressive thresholding, fringe adjusted filters, image segmentation, joint transform correlation, synthetic discriminant function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
295 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
294 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: High-speed running, current collector, contact strip, mathematical model, contact pressure, program control, wear, life cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353
293 Spacecraft Neural Network Control System Design using FPGA

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

Keywords: Spacecraft, neural network, FPGA, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
292 Siding Mode Control of Pitch-Rate of an F-16 Aircraft

Authors: Ekprasit Promtun, Sridhar Seshagiri

Abstract:

This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.

Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
291 Investigating Elements of Identity of Traditional Neighborhoods in Isfahan and Using These Elements in the Design of Modern Neighborhoods

Authors: Saman Keshavarzi

Abstract:

The process of planning, designing and building neighborhoods is a complex and multidimensional part of urban planning. Understanding the elements that give a neighborhood a sense of identity can lead to successful city planning and result in a cohesive and functional community where people feel a sense of belonging. These factors are important in ensuring that the needs of the urban population are met to live in a safe, pleasant and healthy society. This research paper aims to identify the elements of the identity of traditional neighborhoods in Isfahan and analyzes ways of using these elements in the design of modern neighborhoods to increase social interaction between communities and cultural reunification of people. The neighborhood of Jolfa in Isfahan has a unique socio-cultural identity as it dates back to the Safavid Dynasty of the 16th century, and most of its inhabitants are Christian Armenians of a religious minority. The elements of the identity of Jolfa were analyzed through the following research methods: field observations, distribution of questionnaires and qualitative analysis. The basic methodology that was used to further understand the Jolfa neighborhood and deconstruct the identity image that residents associate with their respective neighborhoods was a qualitative research method. This was done through utilizing questionnaires that respondents had to fill out in response to a series of research questions. From collecting these qualitative data, the major finding was that traditional neighborhoods that have elements of identity embedded in them are seen to have closer-knit communities whose residents have strong societal ties. This area of study in urban planning is vital to ensuring that new neighborhoods are built with concepts of social cohesion, community and inclusion in mind as they are what lead to strong, connected, and prosperous societies.

Keywords: Development, housing, identity, neighborhood, policy, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
290 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
289 Thermal Management of Space Power Electronics using TLM-3D

Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai

Abstract:

When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.

Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
288 The Influence of the Intellectual Capital on the Firms’ Market Value: A Study of Listed Firms in the Tehran Stock Exchange (TSE)

Authors: Bita Mashayekhi, Seyed Meisam Tabatabaie Nasab

Abstract:

Intellectual capital is one of the most valuable and important parts of the intangible assets of enterprises especially in knowledge-based enterprises. With respect to increasing gap between the market value and the book value of the companies, intellectual capital is one of the components that can be placed in this gap. This paper uses the value added efficiency of the three components, capital employed, human capital and structural capital, to measure the intellectual capital efficiency of Iranian industries groups, listed in the Tehran Stock Exchange (TSE), using a 8 years period data set from 2005 to 2012. In order to analyze the effect of intellectual capital on the market-to-book value ratio of the companies, the data set was divided into 10 industries, Banking, Pharmaceutical, Metals & Mineral Nonmetallic, Food, Computer, Building, Investments, Chemical, Cement and Automotive, and the panel data method was applied to estimating pooled OLS. The results exhibited that value added of capital employed has a positive significant relation with increasing market value in the industries, Banking, Metals & Mineral Nonmetallic, Food, Computer, Chemical and Cement, and also, showed that value added efficiency of structural capital has a positive significant relation with increasing market value in the Banking, Pharmaceutical and Computer industries groups. The results of the value added showed a negative relation with the Banking and Pharmaceutical industries groups and a positive relation with computer and Automotive industries groups. Among the studied industries, computer industry has placed the widest gap between the market value and book value in its intellectual capital.

Keywords: Capital Employed, Human Capital, Intellectual Capital, Market-to-Book Value, Structural Capital, Value Added Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
287 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: Air pollution, dispersion, emissions, line sources, road traffic, urban transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
286 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: Railway ballast, coal fouling, discrete element modelling, discrete element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
285 Digital Content Strategy: Detailed Review of the Key Content Components

Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq

Abstract:

The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression through to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is in establishing an agreed definition for the notion of Digital Content Strategy (DCS), which currently does not exist, as it is viewed from an excessive number of angles. A strategic approach to content, nonetheless, is required, both practically and contextually. We, therefore, aimed at attempting to identify the key content components, comprising a DCS, to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of DCS and related aspects, using PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data were collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources, related to the issues discussed, we revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of DCS and can be considered for implementation in a business retail setting.

Keywords: Digital content strategy, digital marketing strategy, key content components, websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124
284 Digital Content Strategy: Detailed Review of the Key Content Components

Authors: Oksana Razina, Shakeel Ahmad, Jessie Qun Ren, Olufemi Isiaq

Abstract:

The modern life of businesses is categorically reliant on their established position online, where digital (and particularly website) content plays a significant role as the first point of information. Digital content, therefore, becomes essential – from making the first impression through to the building and development of client relationships. Despite a number of valuable papers suggesting a strategic approach when dealing with digital data, other sources often do not view or accept the approach to digital content as a holistic or continuous process. Associations are frequently made with merely a one-off marketing campaign or similar. The challenge is in establishing an agreed definition for the notion of Digital Content Strategy (DCS), which currently does not exist, as it is viewed from an excessive number of angles. A strategic approach to content, nonetheless, is required, both practically and contextually. We, therefore, aimed at attempting to identify the key content components, comprising a DCS, to ensure all the aspects were covered and strategically applied – from the company’s understanding of the content value to the ability to display flexibility of content and advances in technology. This conceptual project evaluated existing literature on the topic of DCS and related aspects, using PRISMA Systematic Review Method, Document Analysis, Inclusion and Exclusion Criteria, Scoping Review, Snow-Balling Technique and Thematic Analysis. The data were collected from academic and statistical sources, government and relevant trade publications. Based on the suggestions from academics and trading sources, related to the issues discussed, we revealed the key actions for content creation and attempted to define the notion of DCS. The major finding of the study presented Key Content Components of DCS and can be considered for implementation in a business retail setting.

Keywords: Digital content strategy, digital marketing strategy, key content components, websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90
283 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
282 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: Cascade control, dynamic braking system, DC traction motors, slip control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
281 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
280 Sustainability Assessment of a Deconstructed Residential House

Authors: Atiq U. Zaman, Juliet Arnott

Abstract:

This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.

Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
279 Improving Quality of Business Networks for Information Systems

Authors: Hazem M. El-Bakry, Ahmed Atwan

Abstract:

Computer networks are essential part in computerbased information systems. The performance of these networks has a great influence on the whole information system. Measuring the usability criteria and customers satisfaction on small computer network is very important. In this article, an effective approach for measuring the usability of business network in an information system is introduced. The usability process for networking provides us with a flexible and a cost-effective way to assess the usability of a network and its products. In addition, the proposed approach can be used to certify network product usability late in the development cycle. Furthermore, it can be used to help in developing usable interfaces very early in the cycle and to give a way to measure, track, and improve usability. Moreover, a new approach for fast information processing over computer networks is presented. The entire data are collected together in a long vector and then tested as a one input pattern. Proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Usability Criteria, Computer Networks, Fast Information Processing, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
278 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
277 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow

Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles

Abstract:

The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.

Keywords: Baffles length, dished bottom, dead zone, flow field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
276 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: V. Sandeep Kumar, S. Anuradha

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
275 Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels

Authors: Zuhaib Ashfaq Khan, Imran Khan, Nandana Rajatheva

Abstract:

In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.

Keywords: Cooperation Diversity, Best Channel Selectionscheme, MIMO relay networks, V-BLAST, QRdecomposition, and MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
274 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: Optical density, specific optical density, transmittance, visibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
273 Finite Element Prediction of Multi-Size Particulate Flow through Two-Dimensional Pump Casing

Authors: K. V. Pagalthivarthi, R. J. Visintainer

Abstract:

Two-dimensional Eulerian (volume-averaged) continuity and momentum equations governing multi-size slurry flow through pump casings are solved by applying a penalty finite element formulation. The computational strategy validated for multi-phase flow through rectangular channels is adapted to the present study.   The flow fields of the carrier, mixture and each solids species, and the concentration field of each species are determined sequentially in an iterative manner. The eddy viscosity field computed using Spalart-Allmaras model for the pure carrier phase is modified for the presence of particles. Streamline upwind Petrov-Galerkin formulation is used for all the momentum equations for the carrier, mixture and each solids species and the concentration field for each species. After ensuring mesh-independence of solutions, results of multi-size particulate flow simulation are presented to bring out the effect of bulk flow rate, average inlet concentration, and inlet particle size distribution. Mono-size computations using (1) the concentration-weighted mean diameter of the slurry and (2) the D50 size of the slurry are also presented for comparison with multi-size results.

Keywords: Eulerian-Eulerian model, Multi-size particulate flow, Penalty finite elements, Pump casing, Spalart-Allmaras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
272 Feasibility Study of a Solar Farm Project with an Executive Approach

Authors: Amir Reza Talaghat

Abstract:

Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.

Keywords: Solar farm, solar energy, execution of PV power plant, PV power plant, feasibility study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
271 The COVID-19 Pandemic: Lessons Learned in Promoting Student Internationalisation

Authors: David Cobham

Abstract:

In higher education, a great degree of importance is placed on the internationalisation of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks, and connections and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment, through learning approaches, assessment methods and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country either to study, to work, to volunteer or to gain cultural and social enhancement has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience and adopting collaborative on-line projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learnt and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways, and that they will persist beyond the present to become part of the "new normal" for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Keywords: Trans-national education, internationalisation, higher education management, virtual mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
270 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510