Search results for: Bridge beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 699

Search results for: Bridge beam

639 Loss Analysis of Half Bridge DC-DC Converters in High-Current and Low-Voltage Applications

Authors: A. Faruk Bakan, İsmail Aksoy, Nihan Altintaş

Abstract:

In this paper, half bridge DC-DC converters with transformer isolation presented in the literature are analyzed for highcurrent and low-voltage applications under the same operation conditions, and compared in terms of losses and efficiency. The conventional and improved half-bridge DC-DC converters are simulated, and current and voltage waveforms are obtained for input voltage Vdc=500V, output current IO=450A, output voltage VO=38V and switching frequency fS=20kHz. IGBTs are used as power semiconductor switches. The power losses of the semiconductor devices are calculated from current and voltage waveforms. From simulation results, it is seen that the capacitor switched half bridge converter has the best efficiency value, and can be preferred at high power and high frequency applications.

Keywords: Isolated half bridge DC-DC converter, high-current low-voltage applications, soft switching, high efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5134
638 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
637 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
636 Performance of Bridge Girder with Perforations under Tsunami Wave Loading

Authors: Sadia Rahman, Shatirah Akib, M. T. R. Khan, R. Triatmadja

Abstract:

Tsunami disaster poses a great threat to coastal infrastructures. Bridges without adequate provisions for earthquake and tsunami loading is generally vulnerable to tsunami attack. During the last two disastrous tsunami event (i.e. Indian Ocean and Japan Tsunami) a number of bridges were observed subsequent damages by tsunami waves. In this study, laboratory experiments were conducted to study the effects of perforations in bridge girder in force reduction. Results showed that significant amount of forces were reduced using perforations in girder. Approximately 10% to 18% force reductions were achieved by using about 16% perforations in bridge girder. Subsequent amount of force reductions revealed that perforations in girder are effective in reducing tsunami forces as perforations in girder let water to be passed through. Thus, less bridge damages are expected with the presence of perforations in girder during tsunami period.

Keywords: Bridge, force, girder, perforation, tsunami, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
635 Analytical Study on the Shape of T-type Girder Modular Bridge Connection by Using Parameter

Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

Recently, to cope with the rapidly changing construction trend with aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape of the transverse connection of T-type girder newly developed between the segmented modules is not verified. Therefore, the verification of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verified model of transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.

Keywords: Modular bridge, optimal transverse shape, parameter, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
634 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
633 Efficient Numerical Model for Studying Bridge Pier Collapse in Floods

Authors: Thanut Kallaka, Ching-Jong Wang

Abstract:

High level and high velocity flood flows are potentially harmful to bridge piers as evidenced in many toppled piers, and among them the single-column piers were considered as the most vulnerable. The flood flow characteristic parameters including drag coefficient, scouring and vortex shedding are built into a pier-flood interaction model to investigate structural safety against flood hazards considering the effects of local scouring, hydrodynamic forces, and vortex induced resonance vibrations. By extracting the pier-flood simulation results embedded in a neural networks code, two cases of pier toppling occurred in typhoon days were reexamined: (1) a bridge overcome by flash flood near a mountain side; (2) a bridge washed off in flood across a wide channel near the estuary. The modeling procedures and simulations are capable of identifying the probable causes for the tumbled bridge piers during heavy floods, which include the excessive pier bending moments and resonance in structural vibrations.

Keywords: Bridge piers, Neural networks, Scour depth, Structural safety, Vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
632 Free Vibration Analysis of Functionally Graded Beams

Authors: Gholam Reza Koochaki

Abstract:

This work presents the highly accurate numerical calculation of the natural frequencies for functionally graded beams with simply supported boundary conditions. The Timoshenko first order shear deformation beam theory and the higher order shear deformation beam theory of Reddy have been applied to the functionally graded beams analysis. The material property gradient is assumed to be in the thickness direction. The Hamilton-s principle is utilized to obtain the dynamic equations of functionally graded beams. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. Comparison of the numerical results for the homogeneous beam with Euler-Bernoulli beam theory results show that the derived model is satisfactory.

Keywords: Functionally graded beam, Free vibration, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
631 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
630 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
629 Compatibility of Integrated Satellite Systems with Another Satellite System Operating in Adjacent Beam

Authors: Hyemi Gam, Dae-Sub Oh, Bon-Jun Ku

Abstract:

This paper addresses the analysis of the interference between complementary ground component (CGC) base station and mobile earth station (MES). In the frequency sharing scenario between CGC base station and MES, the interference from the adjacent beams must be considered. In this paper, we estimated the interference to MES of an integrated satellite system and the result is presented as the carrier to interference ratio(C/I) with respect to the number of CGC base station in the adjacent beam and the ratio of satellite beam center radius to the total beam radius (R1/R). By using these results, we can determine the minimum separation distance between the CGC base stations of adjacent beam and MES for compatibility. This result can be applied to the CGC base station of an integrated satellite system for the effective frequency sharing.

Keywords: Integrated satellite system, interference, frequency reuse pattern, CGC base station, MES, frequency sharing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
628 Evaluation of Seismic Parameters and Response Modification Factor of Connections in Reduced Beam Section

Authors: Elmira Tavasoli Yousef Abadi

Abstract:

All structural components influencing the inelastic analysis alter response modification factor too. Ductility of connections has been regarded among the factors which have a direct impact on steel frame response modification factor. The experience of recent earthquakes such as the 1994 Northridge earthquake showed that structural connections in steel frame incurred unexpected (brittle) fracture in beam-to-column connection area. One of the methods to improve performance of moment frames is to reduce the beam section near the connection to the column. Reduced Beam Section (RBS) refers to one of the proposed moment connections in FEMA350. Ductility is the most important advantage of this connection over the other moment connections; it is found as the major factor in suitable plastic behavior of structural system. In this paper, beam-to-column connection with RBS and wide-flange beams has been examined via software Abaqus 6.12. It is observed that use of RBS connections can improve the connection behavior at inelastic area to a large extent and avoid stress concentrations and large deformation in the column.

Keywords: RBS, seismic performance, beam-to-column connection, ductility, wide-flange beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
627 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: Pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
626 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
625 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Authors: R. I. Liban, N. Tayşi

Abstract:

This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.

Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
624 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures

Authors: M. Abdollahi, S. N. Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.

Keywords: Beam, EPS block, numerical analysis, post, stress distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
623 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: Base station antenna, multi-beam antenna, smart antenna, vertical sectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
622 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
621 Uniform Distribution of Ductility Demand in Irregular Bridges using Shape Memory Alloy

Authors: Seyed Mohyeddin Ghodratian, Mehdi Ghassemieh, Mohammad Khanmohammadi

Abstract:

Excessive ductility demand on shorter piers is a common problem for irregular bridges subjected to strong ground motion. Various techniques have been developed to reduce the likelihood of collapse of bridge due to failure of shorter piers. This paper presents the new approach to improve the seismic behavior of such bridges using Nitinol shape memory alloys (SMAs). Superelastic SMAs have the ability to remain elastic under very large deformation due to martensitic transformation. This unique property leads to enhanced performance of controlled bridge compared with the performance of the reference bridge. To evaluate the effectiveness of the devices, nonlinear time history analysis is performed on a RC single column bent highway bridge using a suite of representative ground motions. The results show that this method is very effective in limiting the ductility demand of shorter pier.

Keywords: bridge, ductility demand, irregularity, shape memory alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
620 Strengthening of RC Beams Containing Large Opening at Flexure with CFRP laminates

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

This paper presents the study of strengthening R/C beams with large circular and square opening located at flexure zone by Carbon Fiber Reinforced Polymer (CFRP) laminates. A total of five beams were tested to failure under four point loading to investigate the structural behavior including crack patterns, failure mode, ultimate load and load deflection behaviour. Test results show that large opening at flexure reduces the beam capacity and stiffness; and increases cracking and deflection. A strengthening configuration was designed for each un-strengthened beams based on their respective crack patterns. CFRP laminates remarkably restore the beam capacity of beam with large circular opening at flexure location while 10% re-gain of beam capacity with square opening. The use of CFRP laminates with the designed strengthening configuration could significantly reduce excessive cracking and deflection and increase the ultimate capacity and stiffness of beam.

Keywords: CFRP, large opening, R/C beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3714
619 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information

Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim

Abstract:

Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.

Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
618 Nitrogen and Phosphorus Removal from Livestock Wastewater by Zeolite Ion Exchange and Ionizing Radiation

Authors: Tak-Hyun Kim, Youn-Ku Nam, Myunjoo Lee

Abstract:

The ionizing radiation of livestock wastewater for the removal of nitrogen and phosphorus was studied in the presence of a natural zeolite. The feasibility of a combined process of zeolite ion exchange and electron beam irradiation of livestock wastewater was also investigated. The removal efficiencies of NH4 +-N, T-N and T-P were significantly enhanced by electron beam irradiation after zeolite ion exchange as a pre-treatment. The presence of silica zeolite accelerated the decomposition rate of livestock wastewater in the electron beam irradiation process. These results indicate that the combined process of zeolite ion exchange and electron beam irradiation has the potential for the treatment of livestock wastewater

Keywords: Zeolite, electron beam, livestock wastewater, ammonia nitrogen, phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
617 An Augmented Beam-search Based Algorithm for the Strip Packing Problem

Authors: Hakim Akeb, Mhand Hifi

Abstract:

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
616 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: Non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
615 Hybrid Stainless Steel Girder for Bridge Construction

Authors: Tetsuya Yabuki, Yasunori Arizumi, Tetsuhiro Shimozato, Samy Guezouli, Hiroaki Matsusita, Masayuki Tai

Abstract:

The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown.

Keywords: Smart structure, hybrid stainless steel members, ultimate strength, steel bridge, corrosion prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
614 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

Authors: M. Tawfik, X. Tonnellier, C. Sansom

Abstract:

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
613 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique

Authors: M. S. Sivagamasundari, P. Melba Mary

Abstract:

Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.

Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294
612 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
611 Developing of Fragility Curve for Two-Span Simply Supported Concrete Bridge in Near-Fault Area

Authors: S. Shirazian, M.R. Ghayamghamian, G.R. Nouri

Abstract:

Bridges are one of the main components of transportation networks. They should be functional before and after earthquake for emergency services. Therefore we need to assess seismic performance of bridges under different seismic loadings. Fragility curve is one of the popular tools in seismic evaluations. The fragility curves are conditional probability statements, which give the probability of a bridge reaching or exceeding a particular damage level for a given intensity level. In this study, the seismic performance of a two-span simply supported concrete bridge is assessed. Due to usual lack of empirical data, the analytical fragility curve was developed by results of the dynamic analysis of bridge subjected to the different time histories in near-fault area.

Keywords: Fragility curve, Seismic behavior, Time historyanalysis, Transportation Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
610 Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges

Authors: Bugao Wang, Weifeng Wang, Xianwei Zeng

Abstract:

Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.

Keywords: continuous rigid frame bridge, temperature effectanalysis, temperature field, temperature field simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519