Search results for: Absorption refrigeration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 478

Search results for: Absorption refrigeration

448 Exergetic Comparison between Three Configurations of Two Stage Vapor Compression Refrigeration Systems

Authors: Wafa Halfaoui Mbarek, Khir Tahar, Ben Brahim Ammar

Abstract:

This study reports a comparison from an exergetic point of view between three configurations of vapor compression industrial refrigeration systems operating with R134a as working fluid. The performances of the different cycles are analyzed as function of several operating parameters such as condensing temperature and inter stage pressure. In addition, the contributions of component exergy destruction to the total exergy destruction are obtained for each system. The results are estimated to be used in the selection of the most advantageous configuration from an exergetic view point.

Keywords: Vapor compression, exergy, destruction, efficiency, R134a.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
447 Sound Absorption of Arenga Pinnata Natural Fiber

Authors: Lindawati Ismail, Mohd. Imran Ghazali, Shahruddin Mahzan, Ahmad Mujahid Ahmad Zaidi

Abstract:

Arenga pinnata is an abundantly natural fiber that can be used for sound proof material. However, the scientific data of acoustics properties of Arenga pinnata was not available yet. In this study the sound absorption of pure arenga pinnata was measured. The thickness of Arenga pinnata was varied in 10 mm, 20 mm, 30mm, and 40mm. This work was carried out to investigate the potential of using Arenga pinnata fiber as raw material for sound absorbing material. Impedance Tube Method was used to measure sound absorption coefficient (α). The Measurements was done in accordance with ASTM E1050-98, that is the standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system . The results showed that sound absorption coefficients of Arenga pinnata were good from 2000 Hz to 5000 Hz within the range of 0.75 – 0.90. The optimum sound absorption coefficient was obtained from the thickness of 40 mm. These results indicated that Arenga pinnata fiber is promising to be used as raw material of sound absorbing material with low cost, light, and biodegradable.

Keywords: Sound absorption, Arenga pinnata, raw material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3558
446 Implementation of ALD in Product Development: Study of ROPS to Improve Energy Absorption Performance Using Absorption Part

Authors: Zefry Darmawan, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

Product development is a big issue in the industrial competition and takes a serious part in development of technology. Product development process could adapt high changes of market needs and transform into engineering concept in order to produce high-quality product. One of the latest methods in product development is Analysis-Led-Design (ALD). It utilizes digital engineering design tools with finite analysis to perform product robust analysis and valuable for product reliability assurance. Heavy machinery which operates under severe condition should maintain safety to the customer when faced with potential hazard. Cab frame should able to absorb the energy while collision. Through ALD, a series of improvement of cab frame to increase energy absorption was made and analyzed. Improvement was made by modifying shapes of frame and-or install absorption device in certain areas. Simulation result showed that install absorption device could increase absorption energy than modifying shape.

Keywords: ALD, ROPS, energy absorption, cab frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
445 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: Energy saving, organic fluids, radial turbine, refrigeration plant, vapor compression systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
444 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach

Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling

Abstract:

In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.

Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116
443 Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Adsorption Capacity, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4800
442 Experimental Study on Temperature Dependence of Absorption and Emission Properties of Yb:YAG Crystal as a Disk Laser Medium

Authors: M. Esmaeilzadeh, H. Roohbakhsh, A. Ghaedzadeh

Abstract:

In this paper, the absorption and fluorescence emission spectra of Yb:Y3Al5O12 (YAG)(25 at%) crystal as a disk laser medium are measured at high temperature (300-450K). The absorption and emission cross sections of Yb:YAG crystal are determined using Reciprocity method. Temperature dependence of 941nm absorption cross section and 1031nm emission cross section is extracted in the range of 300-450K. According to our experimental results, an exponential temperature dependence between 300K and 450K is acquired for the 1031nm peak emission cross section and also for 941nm peak absorption cross section of Yb:YAG crystal. These results could be used for simulation and design of high power highly doped Yb:YAG thin disk lasers.

Keywords: Yb:YAG crystal, Emission cross section, Absorption coefficient, Temperature dependence, Reciprocity method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
441 Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain

Abstract:

In present paper, the performance of various alternative refrigerants is compared to find the substitute of R22, the widely used hydrochlorofluorocarbon refrigerant in developing countries. These include the environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134A, R410A, R407C and M20. In the present study, a steady state thermodynamic model (includes both first and second law analysis) which simulates the working of an actual vapor-compression system is developed. The model predicts the performance of system with alternative refrigerants. Considering the recent trends of replacement of ozone depleting refrigerants and improvement in system efficiency, R407C is found to be potential candidate to replace R22 refrigerant in the present study.

Keywords: Refrigeration, compression system, performance study, modeling, R407C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
440 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: Emine Ebru Demirci, Remzi Sahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e. curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: Capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374
439 Investigation of a Wearable Textile Monopole Antenna on Specific Absorption Rate at 2.45 GHz

Authors: Hasliza A. Rahim, Fareq Malek, Ismahayati Adam, Ahmad Sahadah, Nur B. M. Hashim, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed

Abstract:

This paper discusses the investigation of a wearable textile monopole antenna on specific absorption rate (SAR) for bodycentric wireless communication applications at 2.45 GHz. The antenna is characterized on a realistic 8 x 8 x 8 mm3 resolution truncated Hugo body model in CST Microwave Studio software. The result exhibited that the simulated SAR values were reduced significantly by 83.5% as the position of textile monopole was varying between 0 mm and 15 mm away from the human upper arm. A power absorption reduction of 52.2% was also noticed as the distance of textile monopole increased.

Keywords: Monopole antenna, specific absorption rate, textile antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
438 Optimum Turbomachine Selection for Power Regeneration in Vapor Compression Cool Production Plants

Authors: S. B. Alavi, G. Cerri, L. Chennaoui, A. Giovannelli, S. Mazzoni

Abstract:

Power Regeneration in Refrigeration Plant concept has been analyzed and has been shown to be capable of saving about 25% power in Cryogenic Plants with the Power Regeneration System (PRS) running under nominal conditions. The innovative component Compressor Expander Group (CEG) based on turbomachinery has been designed and built modifying CETT compressor and expander, both selected for optimum plant performance. Experiments have shown the good response of the turbomachines to run with R404a as working fluid. Power saving up to 12% under PRS derated conditions (50% loading) has been demonstrated. Such experiments allowed predicting a power saving up to 25% under CEG full load.

Keywords: Compressor, Expander, Power Saving, Refrigeration Plant, Turbine, Turbomachinery Selection, Vapor Pressure Booster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
437 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: Bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
436 Utilization of EAF Reducing Slag from Stainless Steelmaking Process as a Sorbent for CO2

Authors: M. N. N. Hisyamudin, S. Yokoyama, M. Umemoto

Abstract:

In this study, an experimental investigation was carried out to fix CO2 into the electronic arc furnace (EAF) reducing slag from stainless steelmaking process under wet grinding. The slag was ground by the vibrating ball mill with the CO2 and pure water. The reaction behavior was monitored with constant pressure method, and the change of CO2 volume in the experimental system with grinding time was measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption under wet grinding was significantly larger than that under dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, the amount of slag, the diameter of alumina ball and the initial pressure of CO2 increased. However, the initial absorption rate was scarcely influenced by the experimental conditions except for the initial CO2 pressure. According to this research, the CO2 reacted with the CaO inside the slag to form CaCO3.

Keywords: CO2 absorption, EAF reducing slag, vibration ball mill, wet grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
435 Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member

Authors: Shigeyuki Haruyama, Hiroyuki Tanaka, Dai-Heng Chen, Aidil Khaidir Bin Muhamad

Abstract:

In this paper, the deformation modes of a compact impact absorption member subjected to axial compression are investigated using finite element method and experiments. A multiple combination compact impact absorption member, referred to as a 'compress-expand member', is proposed to substitute the conventional thin-walled circular tube. This study found that the proposed compact impact absorption member has stable load increase characteristics and a wider range of high load efficiency (Pave/Pmax) than the thin-walled circular tube. Moreover, the proposed compact impact absorption member can absorb larger loads in a smaller radius than the thin-walled cylindrical tube, as it can maintain its stable deformation in increased wall thicknesses.

Keywords: axial collapse, compact impact absorption member, finite element method, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
434 Optimisation of A Phase Change Thermal Storage System

Authors: Nasrul Amri Mohd Amin, Martin Belusko, Frank Bruno

Abstract:

PCMs have always been viewed as a suitable candidate for off peak thermal storage, particularly for refrigeration systems, due to the high latent energy densities of these materials. However, due to the need to have them encapsulated within a container this density is reduced. Furthermore, PCMs have a low thermal conductivity which reduces the useful amount of energy which can be stored. To consider these factors, the true energy storage density of a PCM system was proposed and optimised for PCMs encapsulated in slabs. Using a validated numerical model of the system, a parametric study was undertaken to investigate the impact of the slab thickness, gap between slabs and the mass flow rate. The study showed that, when optimised, a PCM system can deliver a true energy storage density between 53% and 83% of the latent energy density of the PCM.

Keywords: Phase change material, refrigeration, sustainability, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
433 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: Optimization design, multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
432 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
431 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha

Abstract:

Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters e.g. total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in low temperature circuit (LTC) is CO2 (R744) while Ammonia (R717), Propane (R290), Propylene (R1270), R404A and R12 are the refrigerants in high temperature circuit (HTC). The performance curves of Ammonia, Propane, Propylene, and R404A are compared with R12 to find its nearest substitute. Results show that Ammonia is the best substitute of R12.

Keywords: Cascade system, Refrigerants, Thermodynamic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5693
430 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: Exciton, Refractive index change, Extinction ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
429 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing

Authors: Ali Rabiee, Hessam Ghasemnejad

Abstract:

Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.

Keywords: Through-thickness, stitching, reinforcement, Tulbular composite structures, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
428 Breakdown of LDPE Film under Heavy Water Absorption

Authors: Eka PW, T. Okazaki, Y. Murakami, N., Hozumi, M. Nagao

Abstract:

The breakdown strength characteristic of Low Density Polyethylene films (LDPE) under DC voltage application and the effect of water absorption have been studied. Mainly, our experiment was investigated under two conditions; dry and heavy water absorption. Under DC ramp voltage, the result found that the breakdown strength under heavy water absorption has a lower value than dry condition. In order to clarify the effect, the temperature rise of film was observed using non contact thermograph until the occurrence of the electrical breakdown and the conduction current of the sample was also measured in correlation with the thermograph measurement. From the observations, it was shown that under the heavy water absorption, the hot spot in the samples appeared at lower voltage. At the same voltage the temperature of the hot spot and conduction current was higher than that under the dry condition. The measurement result has a good correlation between the existence of a critical field for conduction current and thermograph observation. In case of the heavy water absorption, the occurrence of the threshold field was earlier than the dry condition as result lead to higher of conduction current and the temperature rise appears after threshold field was significantly increased in increasing of field. The higher temperature rise was caused by the higher current conduction as the result the insulation leads to breakdown to the lower field application.

Keywords: Low density polyethylene, heavy water absorption, conduction current, temperature rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
427 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
426 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: Absorption, data throughput, depolarization, optical fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
425 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. Al-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: Adsorption, desalination, refrigeration, seawater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
424 Global and Local Structure of Supported Pd Catalysts

Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei

Abstract:

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
423 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.

Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
422 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
421 Performance of an Absorption Refrigerator Using a Solar Thermal Collector

Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim

Abstract:

In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.

Keywords: Absorption, ammonia, cold room, solar collector, vacuum tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
420 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabeti, Z. Neffeh, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming.

In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold.

Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize.

The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: Absorption chillers, crystallization, experimental results, Lithium Bromide solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3716
419 Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate

Authors: Yeşim Tosun, Remzi Şahin

Abstract:

This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly.

Keywords: Capillary water absorption, compressive strength, density, recycled concrete aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771