Search results for: 3D wave model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7825

Search results for: 3D wave model

7825 Simulation of Irregular Waves by CFD

Authors: Muniyandy Elangovan

Abstract:

Wave generation methodology has been developed and validated by simulating wave in CFD. In this analysis, Flap type wave maker has been modeled numerically with wave basin to generate waves for marine experimental analysis. Irregular waves are arrived from the wave spectrum, and this wave has been simulated in CFD. Generated irregular wave has been compared with an analytical wave. Simulated wave has been processed for FFT analysis, and the wave spectrum is validated with original wave spectrum.

Keywords: Numerical wave tank, irregular wave, FFT, wavespectrum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4043
7824 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline

Authors: Zuodong Liang, Dong-Sheng Jeng

Abstract:

Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.

Keywords: Pore pressure, 3D wave model, seabed liquefaction, pipeline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
7823 A Study of the Relation of Wave Height and Erosion at Bangkhuntien Shoreline, Thailand

Authors: Prasertsak Ekphisutsuntorn, Prungchan Wongwises, Chaiyuth Chinnarasri, Usa Humphries, Suphat Vongvisessomjai

Abstract:

In this paper, the significant wave height at the Upper Gulf of Thailand and the changing of wave height at Bangkhuntien shoreline were simulated by using the Simulating WAves Nearshore Model (SWAN) version 40.51. The simulated results indicated that the significant wave height by SWAN model corresponded with the observed data. The results showed that the maximum significant wave height at the Bangkhuntien shoreline were 1.06-2.05 m. and the average significant wave height at the Bangkhuntien shoreline were 0.30-0.47 m. The significant wave height can be used to calculate the erosion through the Bangkhuntien shoreline. The erosion rates at the Bangkhuntien shoreline were prepared by using the aerial photo and they were about 1.80 m/yr. from 1980- 1986, 4.75 m/yr from 1987-1993, 15.28 m/yr from 1994-1996 and 10.03 m/yr from 1997-2002. The relation between the wave energy and the erosion were in good agreement. Therefore, the significant wave height was one of the major factors of the erosion at the Bangkhuntien shoreline.

Keywords: significant wave height, erosion, SWAN, relation, Bangkhuntien shoreline

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
7822 Anisotropic Constitutive Model and its Application in Simulation of Thermal Shock Wave Propagation for Cylinder Shell Composite

Authors: Xia Huang, Wenhui Tang, Banghai Jiang, Xianwen Ran

Abstract:

In this paper, a plane-strain orthotropic elasto-plastic dynamic constitutive model is established, and with this constitutive model, the thermal shock wave induced by intense pulsed X-ray radiation in cylinder shell composite is simulated by the finite element code, then the properties of thermal shock wave propagation are discussed. The results show that the thermal shock wave exhibit different shapes under the radiation of soft and hard X-ray, and while the composite is radiated along different principal axes, great differences exist in some aspects, such as attenuation of the peak stress value, spallation and so on.

Keywords: anisotropic constitutive model, thermal shock wave, X-ray, cylinder shell composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
7821 Calculation of Wave Function at the Origin (WFO) for the Ground State of Doubly Heavy Mesons Based On the Variational Method

Authors: Maryam Momeni Feili, Mahvash Zandy Navgaran

Abstract:

The wave function at the origin is an important quantity in studying many physical problems concerning heavy quarkonia. This is because that it is using for calculating spin state hyperfine splitting and also crucial to evaluating the production and decay amplitude of the heavy quarkonium. In this paper, we present the variational method by using the single-parameter wave function to estimate the WFO for the ground state of heavy mesons.

Keywords: Wave function at the origin, heavy mesons, bound states, variational method, non-relativistic quark model, potential model, trial wave function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
7820 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: Electromechanical device, modeling, renewable energy, sea wave energy, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
7819 The Self-Propelled Model of a Boat, Based on the Wave Thrust

Authors: V. Arabadzhi

Abstract:

We attempted investigate a boat model, based on the conversion of energy of surface wave into a sequence of unidirectional pulses of jet spurts, in other words - model of the boat, which is thrusting by the waves field on water surface. These pulses are forming some average reactive stream from the output nozzle on the stern of boat. The suggested model provides the conversion of its oscillatory motions (both pitching and rolling) into a jet flow. This becomes possible due to special construction of the boat and due to several details, sensitive to the local wave field. The boat model presents the uniflow jet engine without slow conversions of mechanical energy into intermediate forms and without any external sources of energy (besides surface waves). Motion of boat is characterized by fast jerks and average onward velocity, which exceeds the velocities of liquid particles in the wave.

Keywords: Flat-bottomed boat, Underwater wing, Input and output nozzles, Wave thrust, Conversion of wave into a jet stream, Oscillatory motion and onward motion, Squid-like pump, Hatch-like pump, The thrust due to lifting float, The thrust due to radiation reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
7818 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging, and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the first approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results, and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque, and the angular velocity.

Keywords: Near-shore sea waves, Renewable energy, Wave energy conversion, Wave manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
7817 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
7816 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router

Authors: Khine Phyu, Aung Myint Aye

Abstract:

This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.

Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
7815 Wave-Structure Interaction for Submerged Quarter-Circle Breakwaters of Different Radii - Reflection Characteristics

Authors: Arkal Vittal Hegde, L. Ravikiran

Abstract:

The paper presents the results of a series of experiments conducted on physical models of Quarter-circle breakwater (QBW) in a two dimensional monochromatic wave flume. The purpose of the experiments was to evaluate the reflection coefficient Kr of QBW models of different radii (R) for different submergence ratios (d/hc), where d is the depth of water and hc is the height of the breakwater crest from the sea bed. The radii of the breakwater models studied were 20cm, 22.5cm, 25cm, 27.5cm and submergence ratios used varied from 1.067 to 1.667. The wave climate off the Mangalore coast was used for arriving at the various model wave parameters. The incident wave heights (Hi) used in the flume varied from 3 to 18cm, and wave periods (T) ranged from 1.2 s to 2.2 s. The water depths (d) of 40cm, 45cm and 50cm were used in the experiments. The data collected was analyzed to compute variation of reflection coefficient Kr=Hr/Hi (where Hr=reflected wave height) with the wave steepness Hi/gT2 for various R/Hi (R=breakwater radius) values. It was found that the reflection coefficient increased as incident wave steepness increased. Also as wave height decreases reflection coefficient decreases and as structure radius R increased Kr decreased slightly.

Keywords: Incident wave steepness, Quarter-circle breakwater, Reflection coefficient, Submergence ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
7814 Wave Vortex Parameters as an Indicator of Breaking Intensity

Authors: B. Robertson, K. Hall

Abstract:

The study of the geometric shape of the plunging wave enclosed vortices as a possible indicator for the breaking intensity of ocean waves has been ongoing for almost 50 years with limited success. This paper investigates the validity of using the vortex ratio and vortex angle as methods of predicting breaking intensity. Previously published works on vortex parameters, based on regular wave flume results or solitary wave theory, present contradictory results and conclusions. Through the first complete analysis of field collected irregular wave breaking vortex parameters it is illustrated that the vortex ratio and vortex angle cannot be accurately predicted using standard breaking wave characteristics and hence are not suggested as a possible indicator for breaking intensity.

Keywords: Breaking Wave Measurement, Wave Vortex Parameters, Analytical Techniques, Ocean Remote Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
7813 Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai

Abstract:

The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.

Keywords: energy balance equation, Gulf of Thailand, nested gridapplication, South China Sea, wave model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
7812 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
7811 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

Authors: Anjali Verma, Ram Jiwari, Jitender Kumar

Abstract:

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
7810 CFD Simulation and Validation of Flap Type Wave-Maker

Authors: Anant Lal, M. Elangovan

Abstract:

A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.

Keywords: CFD, RANSE, Flap type, wave-maker, VOF, seakeeping, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3921
7809 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
7808 Real-time Interactive Ocean Wave Simulation using Multithread

Authors: K. Prachumrak, T. Kanchanapornchai

Abstract:

This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.

Keywords: Interactive wave, ocean wave, wind effect, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
7807 The Radial Pulse Wave and Blood Viscosity

Authors: Hyunhee Ryu, Young Ju Jeon, Jaeuk U. Kim, Hae Jung Lee, Yu Jung Lee, Jong Yeol Kim

Abstract:

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Keywords: Radial pulse wave, Blood viscosity, Hematocrit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
7806 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
7805 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
7804 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach

Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang

Abstract:

A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.

Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
7803 Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results

Authors: Pavel Turcaj, Yuri I. Abramovich, Gordon J. Frazer

Abstract:

We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
7802 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
7801 Turbulence Modeling and Wave-Current Interactions

Authors: A.-C. Bennis, F. Dumas, F. Ardhuin, B. Blanke

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: Numerical modeling, Rip currents, Turbulence modeling, Wave-current interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
7800 Experimental Characterization of a Thermoacoustic Travelling-Wave Refrigerator

Authors: M. Pierens, J.-P. Thermeau, T. Le Pollès, P. Duthil

Abstract:

The performances of a thermoacoustic travelling-wave refrigerator are presented. Developed in the frame of the European project called THATEA, it is designed for providing 600 W at a temperature of 233 K with an efficiency of 40 % relative to the Carnot efficiency. This paper presents the device and the results of the first measurements. For a cooling power of 210 W, a coefficient of performance relative to Carnot of 30 % is achieved when the refrigerator is coupled with an existing standing-wave engine.

Keywords: Refrigeration, sustainable energy, thermoacoustics, travelling-wave type heat pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
7799 Determination of Seismic Wave of Consolidated Granite Rock in Penang Island: UltrasonicTesting Method Vs Seismic Refraction Method

Authors: Mohd Hafiz Musa, Zulfadhli Hasan Adli, M . N . Khairul Arifin

Abstract:

In seismic survey, the information regarding the velocity of compression wave (Vp) as well as shear wave (Vs) are very useful especially during the seismic interpretation. Previous studies showed that both Vp and Vs determined by above methods are totally different with respect to each other but offered good approximation. In this study, both Vp and Vs of consolidated granite rock were studied by using ultrasonic testing method and seismic refraction method. In ultrasonic testing, two different condition of rock are used which is dry and wet. The differences between Vp and Vs getting by using ultrasonic testing and seismic refraction were investigated and studied. The effect of water content in granite rock towards the value of Vp and Vs during ultrasonic testing are also measured. Within this work, the tolerance of the differences between the velocity of seismic wave getting from ultrasonic testing and the velocity of seismic wave getting from seismic refraction are also measured and investigated.

Keywords: Compressional wave, Granite, Shear Wave, Velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
7798 Surface and Guided Waves in Composites with Nematic Coatings

Authors: Dmitry D. Zakharov

Abstract:

The theoretical prediction of the acoustical polarization effects in the heterogeneous composites, made of thick elastic solids with thin nematic films, is presented. The numericalanalytical solution to the problem of the different wave propagation exhibits some new physical effects in the low frequency domain: the appearance of the critical frequency and the existence of the narrow transition zone where the wave rapidly changes its speed. The associated wave attenuation is highly perturbed in this zone. We also show the possible appearance of the critical frequencies where the attenuation changes the sign. The numerical results of parametrical analysis are presented and discussed.

Keywords: Surface wave, guided wave, heterogeneous composite, nematic coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
7797 Determination of Non Uniform Sinusoidal Microstrip Leaky-Wave Antenna Radiating Performances in Millimeter Band

Authors: Zahéra Mekkioui

Abstract:

Here we have considered non uniform microstrip leaky-wave antenna implemented on a dielectric waveguide by a sinusoidal profile of periodic metallic grating. The non distribution of the attenuation constant α along propagation axis, optimize the radiating characteristics and performances of such antennas. The method developped here is based on an integral method where the formalism of the admittance operator is combined to a BKW approximation. First, the effect of the modeling in the modal analysis of complex waves is studied in detail. Then, the BKW model is used for the dispersion analysis of the antenna of interest. According to antenna theory, a forced continuity of the leaky-wave magnitude at discontinuities of the non uniform structure is established. To test the validity of our dispersion analysis, computed radiation patterns are presented and compared in the millimeter band.

Keywords: antenna, leaky-wave, performances, sinusoidal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
7796 Simulation of Acoustic Properties of Borate and Tellurite Glasses

Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi

Abstract:

Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.

Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523