Search results for: wireless mesh network.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3289

Search results for: wireless mesh network.

499 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: Generalized autoregressive score model, stock returns, time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033
498 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: Community-based innovation, integrated knowledge networks, nanotechnology, technology innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
497 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: Disturbance automation, electric power grid, smart grid, smart switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
496 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks

Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing

Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
495 A Comparative Performance Evaluation Model of Mobile Agent Versus Remote Method Invocation for Information Retrieval

Authors: Yousry El-Gamal, Khalid El-Gazzar, Magdy Saeb

Abstract:

The development of distributed systems has been affected by the need to accommodate an increasing degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an alternative to build a smart generation of highly distributed systems. In this work, we investigate the performance aspect of agent-based technologies for information retrieval. We present a comparative performance evaluation model of Mobile Agents versus Remote Method Invocation by means of an analytical approach. We demonstrate the effectiveness of mobile agents for dynamic code deployment and remote data processing by reducing total latency and at the same time producing minimum network traffic. We argue that exploiting agent-based technologies significantly enhances the performance of distributed systems in the domain of information retrieval.

Keywords: Mobile Agent, performance evaluation, RMI, information retrieval, distributed systems, database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
494 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: Networks, cliques, percolation, core structure, phase transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
493 Linking OpenCourseWares and Open Education Resources: Creating an Effective Search and Recommendation System

Authors: Brett E. Shelton, Joel Duffin, Yuxuan Wang, Justin Ball

Abstract:

With a growing number of digital libraries and other open education repositories being made available throughout the world, effective search and retrieval tools are necessary to access the desired materials that surpass the effectiveness of traditional, allinclusive search engines. This paper discusses the design and use of Folksemantic, a platform that integrates OpenCourseWare search, Open Educational Resource recommendations, and social network functionality into a single open source project. The paper describes how the system was originally envisioned, its goals for users, and data that provides insight into how it is actually being used. Data sources include website click-through data, query logs, web server log files and user account data. Based on a descriptive analysis of its current use, modifications to the platform's design are recommended to better address goals of the system, along with recommendations for additional phases of research.

Keywords: Digital libraries, open education, recommendation system, social networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
492 Web Personalization to Build Trust in E-Commerce: A Design Science Approach

Authors: Choon Ling Sia, Yani Shi, Jiaqi Yan, Huaping Chen

Abstract:

With the development of the Internet, E-commerce is growing at an exponential rate, and lots of online stores are built up to sell their goods online. A major factor influencing the successful adoption of E-commerce is consumer-s trust. For new or unknown Internet business, consumers- lack of trust has been cited as a major barrier to its proliferation. As web sites provide key interface for consumer use of E-Commerce, we investigate the design of web site to build trust in E-Commerce from a design science approach. A conceptual model is proposed in this paper to describe the ontology of online transaction and human-computer interaction. Based on this conceptual model, we provide a personalized webpage design approach using Bayesian networks learning method. Experimental evaluation are designed to show the effectiveness of web personalization in improving consumer-s trust in new or unknown online store.

Keywords: Trust, Web site design, Human-ComputerInteraction, E-Commerce, Design science, Bayesian network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
491 Closely Parametrical Model for an Electrical Arc Furnace

Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel

Abstract:

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Keywords: Modelling, electrical arc, melting, power, EAF, steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
490 Replicating Data Objects in Large-scale Distributed Computing Systems using Extended Vickrey Auction

Authors: Samee Ullah Khan, Ishfaq Ahmad

Abstract:

This paper proposes a novel game theoretical technique to address the problem of data object replication in largescale distributed computing systems. The proposed technique draws inspiration from computational economic theory and employs the extended Vickrey auction. Specifically, players in a non-cooperative environment compete for server-side scarce memory space to replicate data objects so as to minimize the total network object transfer cost, while maintaining object concurrency. Optimization of such a cost in turn leads to load balancing, fault-tolerance and reduced user access time. The method is experimentally evaluated against four well-known techniques from the literature: branch and bound, greedy, bin-packing and genetic algorithms. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality.

Keywords: Auctions, data replication, pricing, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
489 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: Steganalysis, security, fast Fourier transform, streaming media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
488 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique

Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat

Abstract:

The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.

Keywords: AI, bottle, die shaping, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619
487 Efficient Utilization of Commodity Computers in Academic Institutes: A Cloud Computing Approach

Authors: Jasraj Meena, Malay Kumar, Manu Vardhan

Abstract:

Cloud computing is a new technology in industry and academia. The technology has grown and matured in last half decade and proven their significant role in changing environment of IT infrastructure where cloud services and resources are offered over the network. Cloud technology enables users to use services and resources without being concerned about the technical implications of technology. There are substantial research work has been performed for the usage of cloud computing in educational institutes and majority of them provides cloud services over high-end blade servers or other high-end CPUs. However, this paper proposes a new stack called “CiCKAStack” which provide cloud services over unutilized computing resources, named as commodity computers. “CiCKAStack” provides IaaS and PaaS using underlying commodity computers. This will not only increasing the utilization of existing computing resources but also provide organize file system, on demand computing resource and design and development environment.

Keywords: Commodity Computers, Cloud Computing, KVM, Cloudstack, Appscale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
486 Hybridized Technique to Analyze Workstress Related Data via the StressCafé

Authors: Anusua Ghosh, Andrew Nafalski, Jeffery Tweedale, Maureen Dollard

Abstract:

This paper presents anapproach of hybridizing two or more artificial intelligence (AI) techniques which arebeing used to fuzzify the workstress level ranking and categorize the rating accordingly. The use of two or more techniques (hybrid approach) has been considered in this case, as combining different techniques may lead to neutralizing each other-s weaknesses generating a superior hybrid solution. Recent researches have shown that there is a need for a more valid and reliable tools, for assessing work stress. Thus artificial intelligence techniques have been applied in this instance to provide a solution to a psychological application. An overview about the novel and autonomous interactive model for analysing work-stress that has been developedusing multi-agent systems is also presented in this paper. The establishment of the intelligent multi-agent decision analyser (IMADA) using hybridized technique of neural networks and fuzzy logic within the multi-agent based framework is also described.

Keywords: Fuzzy logic, intelligent agent, multi-agent systems, neural network, workplace stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3966
485 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
484 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
483 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
482 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

Authors: Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
481 Determinants of R&D Outsourcing at Japanese Firms: Transaction Cost and Strategic Management Perspectives

Authors: Dai Miyamoto

Abstract:

This paper examines the factors, which determine R&D outsourcing behaviour at Japanese firms, from the viewpoints of transaction cost and strategic management, since the latter half of the 1990s. This study uses empirical analysis, which involves the application of large-sample data. The principal findings of this paper are listed below. Firms that belong to a wider corporate group are more active in executing R&D outsourcing activities. Diversification strategies such as the expansion of product and sales markets have a positive effect on the R&D outsourcing behaviour of firms. Moreover, while quantitative R&D resources have positive influences on R&D outsourcing, qualitative indices have no effect. These facts suggest that R&D outsourcing behaviour of Japanese firms are consistent with the two perspectives of transaction cost and strategic management. Specifically, a conventional corporate group network plays an important role in R&D outsourcing behaviour. Firms that execute R&D outsourcing leverage 'old' networks to construct 'new' networks and use both networks properly.

Keywords: Corporate Group Networks, R&D Outsourcing, Strategic Management Perspective, Transaction Cost Perspective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
480 Enabling Remote Desktop in a Virtualized Environment for Cloud Services

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. This paper presents our development on enabling an individual user's desktop in a virtualized environment, which is stored on a remote virtual machine rather than locally. We present the initial work on the integration of virtual desktop and application sharing with virtualization technology. Given the development of remote desktop virtualization, this proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the cost of software licenses and platform maintenances. Moreover, this development also helps boost user productivity by promoting a flexible model that lets users access their desktop environments from virtually anywhere.

Keywords: Cloud Computing, Virtualization, Virtual Desktop, Elastic Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
479 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231
478 Congestion Management in a Deregulated Power System with Micro Grid

Authors: Guguloth Ramesh, T. K. Sunil Kumar

Abstract:

This paper presents congestion management in deregulated power systems. In a deregulated environment, every buyer wants to buy power from the cheapest generator available, irrespective of relative geographical location of buyer and seller. As a consequence of this, the transmission corridors evacuating the power of cheaper generators would get overloaded if all such transactions are approved. Congestion management is a mechanism to prioritize the transactions and commit to such a schedule which would not overload the network. The congestions in the transmission lines are determined by Optimal Power Flow (OPF) solution, which is carried by primal liner programming method. Congestion in the transmission lines are alleviated by connected Distributed Generation (DG) of micro grid at load bus. A method to determine the optimal location of DG unit has been suggested based on transmission line relief sensitivity based approach. The effectiveness of proposed method has been demonstrated on modified IEEE-14 and 30 bus test systems.

Keywords: Congestion management, Distribution Generation (DG), Transmission Line Relief (TLR) sensitivity index, OPF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3892
477 Digital Social Networks: Examining the Knowledge Characteristics

Authors: Nurul Aini M. Nordan, Ahmad I. Z. Abidin, Ahmad K. Mahmood, Noreen I. Arshad

Abstract:

In today-s information age, numbers of organizations are still arguing on capitalizing the values of Information Technology (IT) and Knowledge Management (KM) to which individuals can benefit from and effective communication among the individuals can be established. IT exists in enabling positive improvement for communication among knowledge workers (k-workers) with a number of social network technology domains at workplace. The acceptance of digital discourse in sharing of knowledge and facilitating the knowledge and information flows at most of the organizations indeed impose the culture of knowledge sharing in Digital Social Networks (DSN). Therefore, this study examines whether the k-workers with IT background would confer an effect on the three knowledge characteristics -- conceptual, contextual, and operational. Derived from these three knowledge characteristics, five potential factors will be examined on the effects of knowledge exchange via e-mail domain as the chosen query. It is expected, that the results could provide such a parameter in exploring how DSN contributes in supporting the k-workers- virtues, performance and qualities as well as revealing the mutual point between IT and KM.

Keywords: Digital social networks, e-mail, knowledge management, knowledge worker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
476 An MADM Framework toward Hierarchical Production Planning in Hybrid MTS/MTO Environments

Authors: H. Rafiei, M. Rabbani

Abstract:

This paper proposes a new decision making structure to determine the appropriate product delivery strategy for different products in a manufacturing system among make-to-stock, make-toorder, and hybrid strategy. Given product delivery strategies for all products in the manufacturing system, the position of the Order Penetrating Point (OPP) can be located regarding the delivery strategies among which location of OPP in hybrid strategy is a cumbersome task. In this regard, we employ analytic network process, because there are varieties of interrelated driving factors involved in choosing the right location. Moreover, the proposed structure is augmented with fuzzy sets theory in order to cope with the uncertainty of judgments. Finally, applicability of the proposed structure is proven in practice through a real industrial case company. The numerical results demonstrate the efficiency of the proposed decision making structure in order partitioning and OPP location.

Keywords: Hybrid make-to-stock/make-to-order, Multi-attribute decision making, Order partitioning, Order penetration point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
475 Simulation of Thin Film Relaxation by Buried Misfit Networks

Authors: A. Derardja

Abstract:

The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.

Keywords: Angular misfit, dislocation networks, plane interfaces, stacking faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
474 Power-Efficient AND-EXOR-INV Based Realization of Achilles' heel Logic Functions

Authors: Padmanabhan Balasubramanian, R. Chinnadurai

Abstract:

This paper deals with a power-conscious ANDEXOR- Inverter type logic implementation for a complex class of Boolean functions, namely Achilles- heel functions. Different variants of the above function class have been considered viz. positive, negative and pure horn for analysis and simulation purposes. The proposed realization is compared with the decomposed implementation corresponding to an existing standard AND-EXOR logic minimizer; both result in Boolean networks with good testability attribute. It could be noted that an AND-OR-EXOR type logic network does not exist for the positive phase of this unique class of logic function. Experimental results report significant savings in all the power consumption components for designs based on standard cells pertaining to a 130nm UMC CMOS process The simulations have been extended to validate the savings across all three library corners (typical, best and worst case specifications).

Keywords: Achilles' heel functions, AND-EXOR-Inverter logic, CMOS technology, low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
473 Preparation a Study on the Use of the Resident Registration Number and Alternatives for RRN

Authors: Hyejin Pak, Changsoo Kim, Healahng Choi

Abstract:

The resident registration number was adopted for the purposes of enhanced services for resident convenience and effective performance of governmental administrative affairs. However, it has been used for identification purposes customarily and irrationally in line with the development and spread of the Internet. In response to the growing concern about the leakage of collected RRNs and possible abuses of stolen RRNs, e.g. identity theft, for crimes, the Korean Communications Commission began to take legal/regulatory actions in 2011 to minimize the online collection and use of resident registration numbers. As the use of the RRN was limited after the revision of the Act on Promotion of Information and Communications Network Utilization and Information Protection, etc., online business providers were required to have alternatives to the RRN for the purpose of identifying the user's identity and age, in compliance with the law, and settling disputes with customers. This paper presents means of verifying the personal identity by taking advantage of the commonly used infrastructure and simply replacing personal information entered and stored, without requiring users to enter their RRNs.

Keywords: Resident Registration Numbers(RRNs), Alternative identification for RRNs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
472 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
471 Consensus of Multi-Agent Systems under the Special Consensus Protocols

Authors: Konghe Xie

Abstract:

Two consensus problems are considered in this paper. One is the consensus of linear multi-agent systems with weakly connected directed communication topology. The other is the consensus of nonlinear multi-agent systems with strongly connected directed communication topology. For the first problem, a simplified consensus protocol is designed: Each child agent can only communicate with one of its neighbors. That is, the real communication topology is a directed spanning tree of the original communication topology and without any cycles. Then, the necessary and sufficient condition is put forward to the multi-agent systems can be reached consensus. It is worth noting that the given conditions do not need any eigenvalue of the corresponding Laplacian matrix of the original directed communication network. For the second problem, the feedback gain is designed in the nonlinear consensus protocol. Then, the sufficient condition is proposed such that the systems can be achieved consensus. Besides, the consensus interval is introduced and analyzed to solve the consensus problem. Finally, two numerical simulations are included to verify the theoretical analysis.

Keywords: Consensus, multi-agent systems, directed spanning tree, the Laplacian matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
470 The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method

Authors: J. Nisar, S. Halim

Abstract:

The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline.

Keywords: Construction project management, critical path method, project scheduling, precedence diagram method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474