Search results for: Experience based learning
10066 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.
Keywords: Bearing, force measurement, IoT, strain gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68110065 Optimization of Machining Parametric Study on Electrical Discharge Machining
Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel
Abstract:
Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.
Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83310064 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions
Authors: Andrzej Śluzek
Abstract:
To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.
Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139510063 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL
Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani
Abstract:
In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.Keywords: Islanding, under-frequency load shedding, frequency rate of change, static UFLS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221410062 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error
Authors: Oscar Javier Herrera, Manuel Ángel Camacho
Abstract:
This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.Keywords: Demand Forecasting, Empirical Distribution, Propagation of Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184410061 ALD HfO2 Based RRAM with Ti Capping
Authors: B. B. Weng, Z. Fang, Z. X. Chen, X. P. Wang, G. Q. Lo, D. L. Kwong
Abstract:
HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an Agilent-B1500A analyzer.
Keywords: HfOx, resistive switching, RRAM, metal capping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204010060 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature
Authors: Josef Novák, Alena Kohoutková
Abstract:
The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.
Keywords: Elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112210059 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165910058 Oriented Strandboard-GEOGYPTM Underlayment - A Novel Composite Flooring System
Authors: B. Noruziaan, A. Shvarzman, R. Leahy
Abstract:
An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.
Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183110057 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144210056 Fast Database Indexing for Large Protein Sequence Collections Using Parallel N-Gram Transformation Algorithm
Authors: Jehad A. H. Hammad, Nur'Aini binti Abdul Rashid
Abstract:
With the rapid development in the field of life sciences and the flooding of genomic information, the need for faster and scalable searching methods has become urgent. One of the approaches that were investigated is indexing. The indexing methods have been categorized into three categories which are the lengthbased index algorithms, transformation-based algorithms and mixed techniques-based algorithms. In this research, we focused on the transformation based methods. We embedded the N-gram method into the transformation-based method to build an inverted index table. We then applied the parallel methods to speed up the index building time and to reduce the overall retrieval time when querying the genomic database. Our experiments show that the use of N-Gram transformation algorithm is an economical solution; it saves time and space too. The result shows that the size of the index is smaller than the size of the dataset when the size of N-Gram is 5 and 6. The parallel N-Gram transformation algorithm-s results indicate that the uses of parallel programming with large dataset are promising which can be improved further.Keywords: Biological sequence, Database index, N-gram indexing, Parallel computing, Sequence retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213610055 Effective Digital Music Retrieval System through Content-based Features
Authors: Bokyung Sung, Kwanghyo Koo, Jungsoo Kim, Myung-Bum Jung, Jinman Kwon, Ilju Ko
Abstract:
In this paper, we propose effective system for digital music retrieval. We divided proposed system into Client and Server. Client part consists of pre-processing and Content-based feature extraction stages. In pre-processing stage, we minimized Time code Gap that is occurred among same music contents. As content-based feature, first-order differentiated MFCC were used. These presented approximately envelop of music feature sequences. Server part included Music Server and Music Matching stage. Extracted features from 1,000 digital music files were stored in Music Server. In Music Matching stage, we found retrieval result through similarity measure by DTW. In experiment, we used 450 queries. These were made by mixing different compression standards and sound qualities from 50 digital music files. Retrieval accurate indicated 97% and retrieval time was average 15ms in every single query. Out experiment proved that proposed system is effective in retrieve digital music and robust at various user environments of web.
Keywords: Music Retrieval, Content-based, Music Feature and Digital Music.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151910054 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application
Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman
Abstract:
Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448210053 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval
Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.
Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245310052 Spectrum Sensing Based On the Cyclostationarity of PU Signals in High Traffic Environments
Authors: Keunhong Chae, Youngpo Lee, Seokho Yoon
Abstract:
In cognitive radio (CR) systems, the primary user (PU) signal would randomly depart or arrive during the sensing period of a CR user, which is referred to as the high traffic environment. In this paper, we propose a novel spectrum sensing scheme based on the cyclostationarity of PU signals in high traffic environments. Specifically, we obtain a test statistic by applying an estimate of spectral autocoherence function of the PU signal to the generalized- likelihood ratio. From numerical results, it is confirmed that the proposed scheme provides a better spectrum sensing performance compared with the conventional spectrum sensing scheme based on the energy of the PU signals in high traffic environments.
Keywords: Spectrum sensing, cyclostationarity, high traffic environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185510051 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279410050 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation
Authors: Rabia Korkmaz Tan, Şebnem Bora
Abstract:
The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.
Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124410049 An Optimization Model of CMMI-Based Software Project Risk Response Planning
Authors: Chun-guang Pan, Ying-wu Chen
Abstract:
Risk response planning is of importance for software project risk management (SPRM). In CMMI, risk management was in the third capability maturity level, which provides a framework for software project risk identification, assessment, risk planning, risk control. However, the CMMI-based SPRM currently lacks quantitative supporting tools, especially during the process of implementing software project risk planning. In this paper, an economic optimization model for selecting risk reduction actions in the phase of software project risk response planning is presented. Furthermore, an example taken from a Chinese software industry is illustrated to verify the application of this method. The research provides a risk decision method for project risk managers that can be used in the implementation of CMMI-based SPRM.
Keywords: Software project, risk management, CMMI, riskresponse planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209010048 Secure Cryptographic Operations on SIM Card for Mobile Financial Services
Authors: Kerem Ok, Serafettin Senturk, Serdar Aktas, Cem Cevikbas
Abstract:
Mobile technology is very popular nowadays and it provides a digital world where users can experience many value-added services. Service Providers are also eager to offer diverse value-added services to users such as digital identity, mobile financial services and so on. In this context, the security of data storage in smartphones and the security of communication between the smartphone and service provider are critical for the success of these services. In order to provide the required security functions, the SIM card is one acceptable alternative. Since SIM cards include a Secure Element, they are able to store sensitive data, create cryptographically secure keys, encrypt and decrypt data. In this paper, we design and implement a SIM and a smartphone framework that uses a SIM card for secure key generation, key storage, data encryption, data decryption and digital signing for mobile financial services. Our frameworks show that the SIM card can be used as a controlled Secure Element to provide required security functions for popular e-services such as mobile financial services.Keywords: SIM Card, mobile financial services, cryptography, secure data storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206510047 Performance Analysis of Software Reliability Models using Matrix Method
Authors: RajPal Garg, Kapil Sharma, Rajive Kumar, R. K. Garg
Abstract:
This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.Keywords: Matrix method, Model ranking, Model selection, Model selection criteria, Software reliability models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231910046 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148210045 Visual Hull with Imprecise Input
Authors: Peng He
Abstract:
Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.Keywords: Geometric Domain, Computer Vision, Computational Geometry, Visual Hull, Image-Based reconstruction, Imprecise Input, CAD object
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147710044 Comparison of Reliability Systems Based Uncertainty
Authors: A. Aissani, H. Benaoudia
Abstract:
Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125510043 Classification Influence Index and its Application for k-Nearest Neighbor Classifier
Authors: Sejong Oh
Abstract:
Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.Keywords: accuracy, classification, dataset, data preprocessing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149510042 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park
Abstract:
A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.
Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172110041 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243010040 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121810039 Analyzing Transformation of 1D-Functions for Frequency Domain based Video Classification
Authors: Kahraman Ayyildiz, Stefan Conrad
Abstract:
In this paper we illuminate a frequency domain based classification method for video scenes. Videos from certain topical areas often contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Assessing main and side frequencies of each repeating movement gives rise to the motion type. We obtain the frequency domain by transforming spatio-temporal motion trajectories. Further on we explain how to compute frequency features for video clips and how to use them for classifying. The focus of the experimental phase is on transforms utilized for our system. By comparing various transforms, experiments show the optimal transform for a motion frequency based approach.Keywords: action recognition, frequency, transform, motion recognition, repeating movement, video classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169610038 Identifying Quality Islamic Content in Community Question Answering Sites
Authors: Rabia Bibi, Muhammad Shahzad Faisal, Khalid Iqbal, Atif Inayat
Abstract:
Internet is growing rapidly and new community-based content is added by people every second. With this fast-growing community-based content, if a user requires answers of particular questions, then reviews are required from experts or community. However, it is difficult to get quality answers. The Muslim community all over the world is seeking help to get their questions and issues discussed to get answers. Online web portals of religious schools and community-based question answering sites are two big platforms to solve the issues of users. In the case of religious schools, there are experts and qualified religious scholars (mufti) who can give the expert opinion. However, the quality of community-based content cannot be guaranteed as it may not be an answer that satisfies the question of a user. Users on CQA sites may include spammers or individual criticizing the questioner instead of providing useful answers. In this paper, we research strategies to naturally distinguish the right content. As an experiment, we concentrate on Yahoo! Answers, and Quora, popular online QA sites, where questions are asked, answered, edited, and organized by a large community of users. We present the classification of data to categorize both relevant and irrelevant answers. Specifically, we demonstrate that the proposed framework can isolate quality answers from the rest with an exactness near that of people.
Keywords: Community-based question and answering, evaluation and prediction of quality answer, answer classification, Islamic content, answer ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8110037 Named Entity Recognition using Support Vector Machine: A Language Independent Approach
Authors: Asif Ekbal, Sivaji Bandyopadhyay
Abstract:
Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.
Keywords: Named Entity (NE), Named Entity Recognition (NER), Support Vector Machine (SVM), Bengali, Hindi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404