Search results for: HfOx
3 Switching Behaviors of TiN/HfOx/Pt Based RRAM
Authors: B. B. Weng, Z. Fang, Z. X. Chen, X. P. Wang, G. Q. Lo, D. L. Kwong
Abstract:
Resistive Random Access Memory (RRAM) had received great amount of attention from various research efforts in recent years, owing to its promising performance as a next generation memory device. In this paper, samples based on TiN/HfOx/Pt stack were prepared and its electrical switching behaviors were characterized and discussed in brief.
Keywords: HfOx, resistive switching, RRAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482 ALD HfO2 Based RRAM with Ti Capping
Authors: B. B. Weng, Z. Fang, Z. X. Chen, X. P. Wang, G. Q. Lo, D. L. Kwong
Abstract:
HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an Agilent-B1500A analyzer.
Keywords: HfOx, resistive switching, RRAM, metal capping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391 Resistive RAM Based on Hfox and its Temperature Instability Study
Authors: Z. Fang, H.Y. Yu, W.J. Liu, N. Singh, G.Q. Lo
Abstract:
High performance Resistive Random Access Memory (RRAM) based on HfOx has been prepared and its temperature instability has been investigated in this work. With increasing temperature, it is found that: leakage current at high resistance state increases, which can be explained by the higher density of traps inside dielectrics (related to trap-assistant tunneling), leading to a smaller On/Off ratio; set and reset voltages decrease, which may be attributed to the higher oxygen ion mobility, in addition to the reduced potential barrier to create / recover oxygen ions (or oxygen vacancies); temperature impact on the RRAM retention degradation is more serious than electrical bias.Keywords: RRAM, resistive switching, temperature instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410