Search results for: general variable neighborhood search algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5718

Search results for: general variable neighborhood search algorithm.

5478 Accumulation of Pollutants, Self-purification and Impact on Peripheral Urban Areas: A Case Study in Shantytowns in Argentina

Authors: N. Porzionato, M. Mantiñan, E. Bussi, S. Grinberg, R. Gutierrez, G. Curutchet

Abstract:

This work sets out to debate the tensions involved in the processes of contamination and self-purification in the urban space, particularly in the streams that run through the Buenos Aires metropolitan area. For much of their course, those streams are piped; their waters do not come into contact with the outdoors until they have reached deeply impoverished urban areas with high levels of environmental contamination. These are peripheral zones that, until thirty years ago, were marshlands and fields. They are now densely populated areas largely lacking in urban infrastructure. The Cárcova neighborhood, where this project is underway, is in the José León Suárez section of General San Martín county, Buenos Aires province. A stretch of José León Suarez canal crosses the neighborhood. Starting upstream, this canal carries pollutants due to the sewage and industrial waste released into it. Further downstream, in the neighborhood, domestic drainage is poured into the stream. In this paper, we formulate a hypothesis diametrical to the one that holds that these neighborhoods are the primary source of contamination, suggesting instead that in the stretch of the canal that runs through the neighborhood the stream’s waters are actually cleaned and the sediments accumulate pollutants. Indeed, the stretches of water that runs through these neighborhoods act as water processing plants for the metropolis. This project has studied the different organic-load polluting contributions to the water in a certain stretch of the canal, the reduction of that load over the course of the canal, and the incorporation of pollutants into the sediments. We have found that the surface water has considerable ability to self-purify, mostly due to processes of sedimentation and adsorption. The polluting load is accumulated in the sediments where that load stabilizes slowly by means of anaerobic processes. In this study, we also investigated the risks of sediment management and the use of the processes studied here in controlled conditions as tools of environmental restoration.

Keywords: Bioremediation, pollutants, sediments, urban streams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
5477 Cross-Industry Innovations–Systematic Identification of Ideas for Radical Problem Solving

Authors: Niklas Echterhoff, Benjamin Amshoff, Jürgen Gausemeier

Abstract:

Creativity is often based on an unorthodox recombination of knowledge; in fact: 80% of all innovations use given knowledge and put it into a new combination. Cross-industry innovations follow this way of thinking and bring together problems and solution ideas from different industries. Therefore analogies and search strategies have to be developed. Taking this path, the questions where to search, what to search and how to search have to be answered. Afterwards, the gathered information can be used within a planned search process. Identified solution ideas have to be assessed and analyzed in detail for the success promising adaption planning.

Keywords: analogy building, cross-industry innovations, knowledge transfer, solution adaption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
5476 On the Interactive Search with Web Documents

Authors: Mario Kubek, Herwig Unger

Abstract:

Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-ofthe- art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents.

Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
5475 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map

Authors: Alexandros Leontitsis, Archana P. Sangole

Abstract:

This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.

Keywords: Parameter estimation, self-organizing feature maps, spherical topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
5474 Using Interval Trees for Approximate Indexing of Instances

Authors: Khalil el Hindi

Abstract:

This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.

Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
5473 Using Pattern Search Methods for Minimizing Clustering Problems

Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar

Abstract:

Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.

Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
5472 An Iterative Algorithm for KLDA Classifier

Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang

Abstract:

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.

Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
5471 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
5470 A Characterized and Optimized Approach for End-to-End Delay Constrained QoS Routing

Authors: P.S.Prakash, S.Selvan

Abstract:

QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we analyzed two algorithms namely Characterized Delay Constrained Routing (CDCR) and Optimized Delay Constrained Routing (ODCR). The CDCR algorithm dealt an approach for delay constrained routing that captures the trade-off between cost minimization and risk level regarding the delay constraint. The ODCR which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.

Keywords: QoS, Delay, Routing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
5469 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method

Authors: F. Karim

Abstract:

In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.

Keywords: Triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
5468 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter

Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn

Abstract:

In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.

Keywords: accumulated histogram, water level detection, band pass filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
5467 An Integrated Software Architecture for Bandwidth Adaptive Video Streaming

Authors: T. Arsan

Abstract:

Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.

Keywords: Adaptive Video Streaming, Bandwidth Estimation, QoS, Software Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
5466 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
5465 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216
5464 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem

Authors: Gaohuizi Guo, Ning Zhang

Abstract:

Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.

Keywords: Firefly algorithm, hybrid algorithm, multi-objective optimization, Sine Cosine algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513
5463 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

 

Keywords: Indirect Vector Control, Induction Motor, Adaptive Tabu Search, Control Design, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
5462 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction

Authors: Tarek Aboueldahab

Abstract:

In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.

Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
5461 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: Computed force control method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
5460 Some Improvements on Kumlander-s Maximum Weight Clique Extraction Algorithm

Authors: Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, Sumio Masuda

Abstract:

Some fast exact algorithms for the maximum weight clique problem have been proposed. Östergard’s algorithm is one of them. Kumlander says his algorithm is faster than it. But we confirmed that the straightforwardly implemented Kumlander’s algorithm is slower than O¨ sterga˚rd’s algorithm. We propose some improvements on Kumlander’s algorithm.

Keywords: Maximum weight clique, exact algorithm, branch-andbound, NP-hard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
5459 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters

Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.

Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
5458 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine

Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.

Keywords: Customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
5457 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients

Authors: Khaled M. EL-Naggar

Abstract:

Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.

Keywords: Optimization, estimation, synchronous, machine, crow search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
5456 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5046
5455 A Scalable Media Job Framework for an Open Source Search Engine

Authors: Pooja Mishra, Chris Pollett

Abstract:

This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.

Keywords: Distributed jobs framework, news aggregation, video conversion, email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
5454 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.

Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
5453 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.

Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
5452 Urban Environment Quality Improvement Planning Case Study: Moft Abad Neighborhood, Tehran, Iran

Authors: Elham Lashkari, Mehrshad Khalaj

Abstract:

Rapid enlargement and physical development of cities have facilitated the emergence of a number of city life crises and decrease of environment quality. Subsequently, the need for noticing the concept of quality and its improvement in urban environments, besides quantitative issues, is obviously recognized. In the domain of urban ideas the importance of taking these issues into consideration is obvious not only in accordance to sustainable development concepts and improvement of public environment quality, but also in the enhancement of social and behavioral models. The major concern of present article is to study the nature of urban environment quality in urban development plans, which is important not only in the concept and the aim of projects but also in their execution procedure. As a result, this paper is going to utilize planning capacities caused by environmental virtues in the planning procedure of Moft Abad neighborhood. Thus, at the first step, applying the Analytical Hierarchy Process (AHP), it has assessed quantitative environmental issues. The present conditions of Moft Abad state that “the neighborhood is generally suffering from the lack of qualitative parameters, and the previously formed planning procedures could not take the sustainable and developmental paths which are aimed at environment quality virtues." The diminution of economical and environmental virtues has resulted in the diminution of residential and social virtues. Therefore, in order to enhance the environment quality in Moft Abad, the present paper has tried to supply the subject plans in order to make a safe, healthy, and lively neighborhood.

Keywords: Urban Environment Quality, Neighborhood Plan, Urban Development Plan, Analytical Hierarchy Process (AHP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
5451 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
5450 Application of Adaptive Genetic Algorithm in Function Optimization

Authors: Panpan Xu, Shulin Sui

Abstract:

The crossover probability and mutation probability are the two important factors in genetic algorithm. The adaptive genetic algorithm can improve the convergence performance of genetic algorithm, in which the crossover probability and mutation probability are adaptively designed with the changes of fitness value. We apply adaptive genetic algorithm into a function optimization problem. The numerical experiment represents that adaptive genetic algorithm improves the convergence speed and avoids local convergence.

Keywords: Genetic algorithm, Adaptive genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
5449 The Hardware Implementation of a Novel Genetic Algorithm

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.

Keywords: Genetic algorithms, hardware-based machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639