Search results for: floor construction.
1063 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures
Authors: Sunaitan Al Mutairi
Abstract:
A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.
Keywords: Construction activities delays, delay analysis for construction projects, mobilization delays, oil and gas projects delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501062 Effective Leadership in the Engineering, Technology, and Construction Industry
Authors: David W. Farler, Perry Haan
Abstract:
This paper explores what effective leadership is being employed in the engineering, technology, and construction (ETC) industry. Organizations need to understand what character traits are being used and what leadership styles work to promote sustainability and improve the triple bottom line. This paper looks at multiple publications on leadership and character traits effective for managers and leaders in the ETC industry. The ETC industry is a trillion-dollar industry, and understanding ways to improve leadership is vital for organizations' successful outcomes. With improvements to the managerial and leadership, there could be ways for organizations to profit more and cut down on cost costs. Finding ways to improve motivation can help organizations improve safety, improve culture, and increase employee motivation. From the research, this paper has found that situational leadership, transformational, and transactional are the most effective leadership styles that individuals can use in the ETC industry for leadership. Character traits that are the most effective have been identified in this research paper. This research has contributed to the ways individuals who start in the engineering and technology industry can improve upon their leadership skills as they are promoted into managerial and leadership roles. The need for managerial positions in the ETC industry, such as project and construction managers, to improve is vital for successful outcomes and creating a high-level performance. The study helps provide a gap in the limited research available to improve ETC leadership for all organizations' present and future.
Keywords: Construction, effective leadership, engineering, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9831061 Low-Cost Eco-Friendly Building Material: A Case Study in Ethiopia
Authors: W. Z. Taffese
Abstract:
This work presents a low-cost and eco-friendly building material named Agrostone panel. Africa-s urban population is growing at an annual rate of 2.8% and 62% of its population will live in urban areas by 2050. As a consequence, many of the least urbanized and least developed African countries- will face serious challenges in providing affordable housing to the urban dwellers. Since the cost of building materials accounts for the largest proportion of the overall construction cost, innovating low-cost building material is vital. Agrostone panel is used in housing projects in Ethiopia. It uses raw materials of agricultural/industrial wastes and/or natural minerals as a filler, magnesium-based chemicals as a binder and fiberglass as reinforcement. Agrostone panel reduces the cost of wall construction by 50% compared with the conventional building materials. The pros and cons of Agrostone panel as well as the use of other waste materials as a raw material to make the panel more sustainable, low-cost and better properties are discussed.Keywords: Agrostone Panel, Low-cost and sustainable Building Materials, Agro-waste for construction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98071060 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.
Keywords: Asphalt, basalt, pavement, recycled aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9701059 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.
Keywords: Complex adaptive system, low carbon ecology, index system, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9981058 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry
Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia
Abstract:
Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681057 Towards an Enhanced Stochastic Simulation Model for Risk Analysis in Highway Construction
Authors: Anshu Manik, William G. Buttlar, Kasthurirangan Gopalakrishnan
Abstract:
Over the years, there is a growing trend towards quality-based specifications in highway construction. In many Quality Control/Quality Assurance (QC/QA) specifications, the contractor is primarily responsible for quality control of the process, whereas the highway agency is responsible for testing the acceptance of the product. A cooperative investigation was conducted in Illinois over several years to develop a prototype End-Result Specification (ERS) for asphalt pavement construction. The final characteristics of the product are stipulated in the ERS and the contractor is given considerable freedom in achieving those characteristics. The risk for the contractor or agency depends on how the acceptance limits and processes are specified. Stochastic simulation models are very useful in estimating and analyzing payment risk in ERS systems and these form an integral part of the Illinois-s prototype ERS system. This paper describes the development of an innovative methodology to estimate the variability components in in-situ density, air voids and asphalt content data from ERS projects. The information gained from this would be crucial in simulating these ERS projects for estimation and analysis of payment risks associated with asphalt pavement construction. However, these methods require at least two parties to conduct tests on all the split samples obtained according to the sampling scheme prescribed in present ERS implemented in Illinois.Keywords: Asphalt Pavement, Risk Analysis, StochasticSimulation, QC/QA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151056 Sustainable Solutions for Enhancing Efficiency, Safety, and Quality of Construction Value Chain Services Integration
Authors: Lo Kar Yin
Abstract:
In view of the increasing speed and quantity of the housing supply, building, and civil engineering infrastructure works triggered by the pandemic across the globe, contractors, professional services providers (PSP), including consultants (e.g., architect, project manager, civil/geotechnical/structural engineer, building services engineer, quantity surveyor/cost manager, etc.) and suppliers have faced tremendous challenges of the fierce market, limited manpower, and resources under contract prices fluctuation and competitive fee and price. With qualitative analysis, this paper is to identify the available information from the industry stakeholders with a view to finding solutions for enhancing efficiency, safety, and quality of construction value chain services for public and private organisations/companies’ sustainable growth, not limited to checking the deliverables and data transfer from multi-disciplinary parties. Technology, contracts, and people are the key requirements for shaping the construction industry. With the integration of a modern engineering contract (e.g., NEC) collaborative approach, practical workflows are designed to address loopholes together with different levels of people employment/retention and technology adoption to achieve the best value for money.
Keywords: Sustainable Development, Sustainable solutions, contract, construction value chain, Building Information Modelling, BIM integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841055 Developing a New Vibration Analysis Calculative Method for Esfahan Subway Train and Railways Design, Manufacturing, and Construction
Authors: Omid A. Zargar
Abstract:
The simulated mass and spring method evaluation for subway or railways construction and installation systems have a wide application in rail industries. This kind of design should be optimizing all related parameters to reduce the amount of vibration in cities, homelands, historical zones and other critical locations. Finite element method could help us a lot to analysis such applications with an excellent accuracy but always developing some simple, fast and user friendly evaluation method required in subway industrial applications. In addition, process parameter optimization extremely required in railway industries to achieve some optimal design of railways with maximum safety, reliability and performance. Furthermore, it is important to reduce vibrations and further related maintenance costs as well as possible. In this paper a simple but useful simulated mass and spring evaluation system developed for Esfahan subway construction. Besides, some of related recent patent and innovations in rail world industries like Suspension mass tuned vibration reducer, short sleeper vibration attenuation fastener and Airtight track vibration-noise reducing fastener discussed in details.
Keywords: Subway construction engineering, natural frequency, operation frequency, vibration analysis, polyurethane layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23591054 Variation of CONWIP Systems
Authors: Joshua Prakash, Chin Jeng Feng
Abstract:
The paper describes the workings for four models of CONWIP systems used till date; the basic CONWIP system, the hybrid CONWIP system, the multi-product CONWIP system, and the parallel CONWIP system. The final novel model is introduced in this paper in a general form. These models may be adopted for analysis for both simulation studies and implementation on the shop floor. For each model, input parameters of interest are highlighted and their impacts on several system performance measures are addressed.Keywords: CONWIP, hybrid CONWIP, mixed CONWIP, multi-product CONWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271053 Study on Connecting Method of Box Pontoons
Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee
Abstract:
Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.
Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31111052 Identification of Factors Influencing Costs in Green Projects
Authors: Nazirah Zainul Abidin, Nurul Zahirah Mokhtar Azizi
Abstract:
Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making.Keywords: Green project, factors influencing cost, hard cost, soft cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091051 An Economical Operation Analysis Optimization Model for Heavy Equipment Selection
Authors: A. Jrade, N. Markiz, N. Albelwi
Abstract:
Optimizing equipment selection in heavy earthwork operations is a critical key in the success of any construction project. The objective of this research incentive was geared towards developing a computer model to assist contractors and construction managers in estimating the cost of heavy earthwork operations. Economical operation analysis was conducted for an equipment fleet taking into consideration the owning and operating costs involved in earthwork operations. The model is being developed in a Microsoft environment and is capable of being integrated with other estimating and optimization models. In this study, Caterpillar® Performance Handbook [5] was the main resource used to obtain specifications of selected equipment. The implementation of the model shall give optimum selection of equipment fleet not only based on cost effectiveness but also in terms of versatility. To validate the model, a case study of an actual dam construction project was selected to quantify its degree of accuracy.Keywords: Operation analysis, optimization model, equipment economics, equipment selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42581050 A Critical Review on the Development of a Theoretical Framework for Managing Environmental Impacts of Construction Project
Authors: Sami Mustafa M. E. Ahmed, Noor Amila Wan Abdullah Zawawi, Zulkipli B. Ghazali
Abstract:
Construction industry is considered as one of the main contributor of natural resources depletion, responsible for high level pollution and it is one of the attributes that pose climate changes and other environmental threats. A lot of efforts had and have been done to reduce and control these impacts. Project Environmental Management (PEM) includes the processes required to ensure that the impacts of the project execution to the surrounding environment will remain within the limits stated in legal permits. The main aim of most of researches conducted managing Environmental Impacts (EI) is to protect earth planet from pollution. Those researches are presenting four major environmental elements; Environmental Management Systems (EMS), Environmental Design (ED), Environmental Planning (EP) and Environmental Impacts Assessments (EIA). Although everything has been said about environmental management for construction projects, but almost everything remains to be said and therefore to be explored or rediscovered because incontestably, almost everything remains to be done. This paper aimed at reviewing some of what has been said about PEM. Also one of its objectives is to explore and rediscover the whole view of managing the EI problems by proposing a framework that based on the relation between these environmental researches.
Keywords: Environmental planning, sustainable design, EIA and EMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24191049 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites
Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib
Abstract:
Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.
Keywords: Cement composites, plant fibers, strength, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721048 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms
Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias
Abstract:
High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.
Keywords: High voltage substations, nature-inspired algorithms, project management, meta-heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12171047 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.
Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27421046 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.
Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931045 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria
Authors: Kenneth M. Oba
Abstract:
This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.
Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7911044 A Novel Portable Device for Fast Analysis of Energetic Materials in the Environment
Authors: Jozef Šesták, Zbyněk Večeřa, Vladislav Kahle, Dana Moravcová, Pavel Mikuška, Josef Kellner, František Božek
Abstract:
Construction of portable device for fast analysis of energetic materials is described in this paper. The developed analytical system consists of two main parts: a miniaturized microcolumn liquid chromatograph of unique construction and original chemiluminescence detector. This novel portable device is able to determine selectively most of nitramine- and nitroester-based explosives as well as inorganic nitrates at trace concentrations in water or soil extracts in less than 8 minutes.
Keywords: Portable device, uLC, chemiluminescence, nitramines, nitroesters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16001043 Factors for Entry Timing Choices Using Principal Axis Factorial Analysis and Logistic Regression Model
Authors: Mat Isa, C. M., Mohd Saman, H., Mohd Nasir, S. R., Jaapar, A.
Abstract:
International market expansion involves a strategic process of market entry decision through which a firm expands its operation from domestic to the international domain. Hence, entry timing choices require the needs to balance the early entry risks and the problems in losing opportunities as a result of late entry into a new market. Questionnaire surveys administered to 115 Malaysian construction firms operating in 51 countries worldwide have resulted in 39.1 percent response rate. Factor analysis was used to determine the most significant factors affecting entry timing choices of the firms to penetrate the international market. A logistic regression analysis used to examine the firms’ entry timing choices, indicates that the model has correctly classified 89.5 per cent of cases as late movers. The findings reveal that the most significant factor influencing the construction firms’ choices as late movers was the firm factor related to the firm’s international experience, resources, competencies and financing capacity. The study also offers valuable information to construction firms with intention to internationalize their businesses.
Keywords: Factors, early movers, entry timing choices, late movers, Logistic Regression Model, Principal Axis Factorial Analysis, Malaysian construction firms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22321042 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS
Authors: V. Sulakatko, F. U. Vogdt, I. Lill
Abstract:
Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.
Keywords: Activity-based cost estimating, Cost estimation, ETICS, Life cycle costing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8281041 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors
Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.Keywords: Construction safety, contractor selection, decision support system, relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841040 Strengthen of Cold-Formed Steel Column with Ferrocement Jacket: Push out Tests
Authors: Khaled Alenezi, Talal Alhajri, M. M. Tahir, Mohamed Ragaee K. Badr, S. O. Bamaga
Abstract:
The population growth in the world requires an increase in demand of residential and housing construction. Using lightweight construction materials such as cold formed steel sections and ferrocement could be an alternate solution to foster the construction industry. In this study, a new composite column is introduced. It consists of cold formed steel section and ferrocement jacket. The ferrocement jacket was constructed using self-compacting mortar with two wire steel mesh of 550 MPa yield strength. Experimental push out tests was conducted to investigate the strength capacities and behavior of proposed shear connectors namely, bolt, bar-angle and self-drilling screw shear connectors. It was found that bolt connector showed the best behavior followed by bar-angle. Also, it was concluded that the ferrocement could be used to strength and improve the behavior of cold formed steel column.
Keywords: Cold formed steel, composite column, push out test, shear connector, ferrocement, strengthen method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32911039 Sustainable Reinforcement: Investigating the Mechanical Properties of Concrete with Recycled Aggregates and Sisal Fibers
Authors: Salahaldein Alsadey, Issa Amaish
Abstract:
Recycled aggregates (RA) have the potential to compromise concrete performance, contributing to issues such as reduced strength and increased susceptibility to cracking. This study investigates the impact of sisal fiber (SF) on the mechanical properties of concrete, with the objective of utilizing SFs as a reinforcing element in concrete compositions containing natural aggregate and varying percentages (25%, 50%, and 75%) of coarse RA replacement. The investigation aims to discern the positive and negative effects on compressive and flexural strength, thereby assessing the viability of SF-reinforced recycled concrete in comparison to conventional concrete composed of natural aggregate without SF. Test results revealed that concrete samples incorporating SF exhibited elevated compressive and flexural strength. Comparative analysis of these strength values was conducted with reference to samples devoid of SF.
Keywords: Sustainable construction, construction materials, recycled aggregate, sisal fibers, compressive strength, flexural strength, eco-friendly concrete, natural fiber composites, recycled materials, construction waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891038 On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method
Authors: Abhijit Mitra
Abstract:
The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.Keywords: Finite field, irreducible polynomial, primitive polynomial, maximal length sequence, additive shift register, multiplicative shift register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39391037 Hip and Valley Support Location in Wood Framing
Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward
Abstract:
Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.
Keywords: Light wood framed, bracing, construction, hip, valley, slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6881036 Planning the Building Evacuation Routes by a Spatial Network
Authors: Hsin-Yun Lee
Abstract:
The previous proposed evacuation routing approaches usually divide the space into multiple interlinked zones. However, it may be harder to clearly and objectively define the margins of each zone. This paper proposes an approach that connects locations of necessary guidance into a spatial network. In doing so, evacuation routes can be constructed based on the links between starting points, turning nodes, and terminal points. This approach more conforms to the real-life evacuation behavior. The feasibility of the proposed approach is evaluated through a case of one floor in a hospital building. Results indicate that the proposed approach provides valuable suggestions for evacuation planning.
Keywords: Evacuation, spatial network, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281035 Requirements and Design of RFID based EManufacturing System
Authors: Gamal Darwish, Ahmed ElShafee, Dina Darwish
Abstract:
This paper proposes the requirements and design of RFID based system for SFC (Shop Floor Control) in order to achieve the factory real time controllability, Allowing to develop EManufacturing System. The detailed logical specifications of the core functions and the design diagrams of RFID based system are developed. Then RFID deployment in E-Manufacturing systems is investigated..Keywords: RFID, E-Manufacturing System, Requirementsspecifications, Design Diagrams, real time controllability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811034 Land Layout and Urban Design of New Cities in Underdeveloped Areas of China: A Case Study of Xixian New Area
Authors: Libin Ouyang
Abstract:
China has experienced a very fast urbanization process in the past two decades. Due to the uncoordinated characteristics of regional development in China, a large number of people from rural areas or small towns have flooded into regional central cities, which are building new cities around them due to the shortage of construction land or the need for urban development. However, the construction of some new cities has not achieved the expected effect, the absorption capacity of industry and population is limited, and the phenomenon of capital and land waste is obvious. This paper takes Xixian New Area in Shaanxi Province, an inland area in Northwest China, as an example, and tries to analyze the reasons for the lack of vitality in Xixian New Area from the perspectives of land use layout and urban design. This paper will also select the Energy-Finance-Trade Start-up Area in Xixian New Area as an important research site, and study how to optimize the land use layout and urban design to ease the population of big cities, effectively solve the problems of big cities, improve the vitality and attractiveness of the new city, and promote the sustainable development of the new city. The study can provide reference for urban planning practitioners and policy makers, provide theoretical help for the construction of new cities in other underdeveloped regions of China, and provide certain case references for the construction of cities in other developing countries in the process of rapid urbanization.
Keywords: New city, land use layout, urban design, urban planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283