Search results for: The (3+1)-dimensional breaking soliton equation
932 Kinetics of Aggregation in Media with Memory
Authors: A. Brener, B. Balabekov, N. Zhumataev
Abstract:
In the paper we submit the non-local modification of kinetic Smoluchowski equation for binary aggregation applying to dispersed media having memory. Our supposition consists in that that intensity of evolution of clusters is supposed to be a function of the product of concentrations of the lowest orders clusters at different moments. The new form of kinetic equation for aggregation is derived on the base of the transfer kernels approach. This approach allows considering the influence of relaxation times hierarchy on kinetics of aggregation process in media with memory.Keywords: Binary aggregation, Media with memory, Non-local model, Relaxation times
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392931 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454930 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces
Authors: Jaipong Kasemsuwan
Abstract:
This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.
Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507929 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method
Authors: Azali Saudi, Jumat Sulaiman
Abstract:
Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862928 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier
Authors: Kadam Bhambri, Neena Gupta
Abstract:
All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.Keywords: All optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393927 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces
Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo
Abstract:
In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method, Finite difference method, Buoyancy forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576926 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150925 Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
Authors: Akbar H. Borzabadi, Omid S. Fard
Abstract:
In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.Keywords: Fredholm integral equation, Optimization method, Optimal control, Nonlinear and linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774924 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560923 Analysis of Driving Conditions and Preferred Media on Diversion
Authors: Yoon-Hyuk Choi
Abstract:
Studies on the distribution of traffic demands have been proceeding by providing traffic information for reducing greenhouse gases and reinforcing the road's competitiveness in the transport section, however, since it is preferentially required the extensive studies on the driver's behavior changing routes and its influence factors, this study has been developed a discriminant model for changing routes considering driving conditions including traffic conditions of roads and driver's preferences for information media. It is divided into three groups depending on driving conditions in group classification with the CART analysis, which is statistically meaningful. And the extent that driving conditions and preferred media affect a route change is examined through a discriminant analysis, and it is developed a discriminant model equation to predict a route change. As a result of building the discriminant model equation, it is shown that driving conditions affect a route change much more, the entire discriminant hit ratio is derived as 64.2%, and this discriminant equation shows high discriminant ability more than a certain degree.Keywords: CART analysis, Diversion, Discriminant model, Driving conditions, and preferred media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054922 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation
Authors: Christhu Raj M. R., Rajeev Sukumaran
Abstract:
Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199921 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127920 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations
Authors: Mahmoud Zarrini, Sanaz Torkaman
Abstract:
In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.
Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030919 Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.Keywords: Gronwall-Bellman-Type integral inequalities, integrodifferential equation, p-exponentially stable, mixed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087918 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304917 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns
Abstract:
Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.Keywords: Lateral-torsional buckling, stability, beam-column, monosymmetric section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803916 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation
Authors: N. Q. Bau, N. V. Nghia
Abstract:
The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.
Keywords: Rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418915 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants
Authors: B. Mukanova, N. Glazyrina, S. Glazyrin
Abstract:
The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.
Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137914 Faster FPGA Routing Solution using DNA Computing
Authors: Manpreet Singh, Parvinder Singh Sandhu, Manjinder Singh Kahlon
Abstract:
There are many classical algorithms for finding routing in FPGA. But Using DNA computing we can solve the routes efficiently and fast. The run time complexity of DNA algorithms is much less than other classical algorithms which are used for solving routing in FPGA. The research in DNA computing is in a primary level. High information density of DNA molecules and massive parallelism involved in the DNA reactions make DNA computing a powerful tool. It has been proved by many research accomplishments that any procedure that can be programmed in a silicon computer can be realized as a DNA computing procedure. In this paper we have proposed two tier approaches for the FPGA routing solution. First, geometric FPGA detailed routing task is solved by transforming it into a Boolean satisfiability equation with the property that any assignment of input variables that satisfies the equation specifies a valid routing. Satisfying assignment for particular route will result in a valid routing and absence of a satisfying assignment implies that the layout is un-routable. In second step, DNA search algorithm is applied on this Boolean equation for solving routing alternatives utilizing the properties of DNA computation. The simulated results are satisfactory and give the indication of applicability of DNA computing for solving the FPGA Routing problem.Keywords: FPGA, Routing, DNA Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592913 Analytical Solution for the Zakharov-Kuznetsov Equations by Differential Transform Method
Authors: Saeideh Hesam, Alireza Nazemi, Ahmad Haghbin
Abstract:
This paper presents the approximate analytical solution of a Zakharov-Kuznetsov ZK(m, n, k) equation with the help of the differential transform method (DTM). The DTM method is a powerful and efficient technique for finding solutions of nonlinear equations without the need of a linearization process. In this approach the solution is found in the form of a rapidly convergent series with easily computed components. The two special cases, ZK(2,2,2) and ZK(3,3,3), are chosen to illustrate the concrete scheme of the DTM method in ZK(m, n, k) equations. The results demonstrate reliability and efficiency of the proposed method.
Keywords: Zakharov-Kuznetsov equation, differential transform method, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929912 Energy Budget Equation of Superfluid HVBK Model: LES Simulation
Authors: M. Bakhtaoui, L. Merahi
Abstract:
The reliability of the filtered HVBK model is now investigated via some large eddy simulations (LES) of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also, the LES results for the other terms of the energy balance are presented.
Keywords: Superfluid turbulence, HVBK, Energy budget, Large Eddy Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013911 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation
Authors: M. Momeni Feyli
Abstract:
Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504910 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.
Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271909 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415908 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem
Authors: Adil AL-Rammahi
Abstract:
In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.
Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490907 A New Version of Unscented Kalman Filter
Authors: S. A. Banani, M. A. Masnadi-Shirazi
Abstract:
This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.
Keywords: Extended Kalman Filter, Iterated EKF, Nonlinearstate estimator, Unscented Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889906 On the Determination of a Time-like Dual Curve in Dual Lorentzian Space
Authors: Emin Özyılmaz
Abstract:
In this work, position vector of a time-like dual curve according to standard frame of D31 is investigated. First, it is proven that position vector of a time-like dual curve satisfies a dual vector differential equation of fourth order. The general solution of this dual vector differential equation has not yet been found. Due to this, in terms of special solutions, position vectors of some special time-like dual curves with respect to standard frame of D31 are presented.Keywords: Classical Differential Geometry, Dual Numbers, DualFrenet Equations, Time-like Dual Curve, Position Vector, DualLorentzian Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468905 Membrane Distillation Process Modeling: Dynamical Approach
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati
Abstract:
This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.
Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853904 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.
Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546903 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method
Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei
Abstract:
As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421