Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
Kinetics of Aggregation in Media with Memory
Authors: A. Brener, B. Balabekov, N. Zhumataev
Abstract:
In the paper we submit the non-local modification of kinetic Smoluchowski equation for binary aggregation applying to dispersed media having memory. Our supposition consists in that that intensity of evolution of clusters is supposed to be a function of the product of concentrations of the lowest orders clusters at different moments. The new form of kinetic equation for aggregation is derived on the base of the transfer kernels approach. This approach allows considering the influence of relaxation times hierarchy on kinetics of aggregation process in media with memory.Keywords: Binary aggregation, Media with memory, Non-local model, Relaxation times
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332340
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392References:
[1] M. von Smoluchowski, "Drei vorträge über diffusion Brownsche molecular bewegung und koagulation von kolloidteichen", Physik. Z. 17 1916, pp. 557-571.
[2] J.A.D. Wattis, "An introduction to mathematical models of coagulation- fragmentation processes: A discrete deterministic mean-field approach ", Physica D 222, 2006, 1.
[3] H. Sontag, K. Strenge, Koagulation und Stabilitat Disperser Systeme, Veb Deutsher Verlag der Wissenschaften, Berlin 1970, p. 147.
[4] H. Stechemesser, B. Dobias (eds.), Coagulation and Flocculation, Taylor & Francis, Boca Raton, 2005, p. 850.
[5] J.C. Neu, J.A. Canizo, L.L. Bonilla, "Three eras of micellization", Phys. Rev. E 66, 2002, 061406.
[6] V. Volterra, Le├ºons sur la théorie mathématique de lalutte pour la vie , Gauther-Villars et Cie , Paris, 1931, p.286.
[7] V.Y. Rudyak, Statistical Theory of Dissipative Processes in Gases and Liquids, (Nauka, Novosibirsk, 1987, p. 272. (In Russian).
[8] A. M. Brener, "Nonlocal Equations of the Heat and Mass Transfer in Technological Processes", Theor. Found. Chem. Eng 40, 2006, pp. 564- 573.
[9] A. M. Brener, "Nonlocal Model of Aggregation in Polydispersed Systems", Theor. Found. Chem. Eng 45, 2011, pp. 349-353.
[10] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, 2000, p. 525.
[11] L. Onsager, "Reciprocal Relations in Irreversible Processes. I", Phys. Rev. 37, 1931, pp. 405-415.
[12] H.B.G. Casimir, "On Onsager's principle of microscopic reversibility", Rev. Mod. Phys. 1945, 17, 343.
[13] D. Jou, J. Casas-Vazquez, and M. Criado-Sancho, Thermodynamics of Fluids under Flow ,Springer, Berlin, 2001, p. 231.
[14] S.R. de Groot, Thermodynamics of Irreversible Processes North- Holland Publ. Comp., 1952, p. 280.
[15] A. Brener, B. Balabekov and A. Kaugaeva, "Non-Local Model of Aggregation in Uniform Polydispersed Systems", Chem. Eng. Trans. 2009, pp. 783-789.
[16] A. Brener, A. Muratov, B. Balabekov, "Non-Local Model of Aggregation Processes", Jour. of Mater. Sci. and Eng. A, 1, No3, 2011, pp. 451-456.
[17] J. Kevorkian and J. Cole, Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996, p. 412.
[18] J. Kozak, V. Basios, and G. Nicolis, "Geometrical Factors in Protein Nucleation", Biophys. Chem., 2003, 105, 495.