Search results for: Stochastic recurrent neural networks
2419 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks
Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu
Abstract:
Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.
Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15852418 Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting
Authors: P. Subbaraj, V. Rajasekaran
Abstract:
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of neural networks has been trained with different architecture and training parameters. The networks are trained and tested for the actual load data of Chennai city (India). A set of better trained conventional ANNs are selected to develop a CANN module using different algorithms instead of using one best conventional ANN. Obtained results using CANN module confirm its validity.
Keywords: Combined ANN, Evolutionary Programming, Particle Swarm Optimization, Genetic Algorithm and Peak load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16832417 Burstiness Reduction of a Doubly Stochastic AR-Modeled Uniform Activity VBR Video
Authors: J. P. Dubois
Abstract:
Stochastic modeling of network traffic is an area of significant research activity for current and future broadband communication networks. Multimedia traffic is statistically characterized by a bursty variable bit rate (VBR) profile. In this paper, we develop an improved model for uniform activity level video sources in ATM using a doubly stochastic autoregressive model driven by an underlying spatial point process. We then examine a number of burstiness metrics such as the peak-to-average ratio (PAR), the temporal autocovariance function (ACF) and the traffic measurements histogram. We found that the former measure is most suitable for capturing the burstiness of single scene video traffic. In the last phase of this work, we analyse statistical multiplexing of several constant scene video sources. This proved, expectedly, to be advantageous with respect to reducing the burstiness of the traffic, as long as the sources are statistically independent. We observed that the burstiness was rapidly diminishing, with the largest gain occuring when only around 5 sources are multiplexed. The novel model used in this paper for characterizing uniform activity video was thus found to be an accurate model.Keywords: AR, ATM, burstiness, doubly stochastic, statisticalmultiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14112416 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16752415 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14462414 Face Detection using Gabor Wavelets and Neural Networks
Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani
Abstract:
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21672413 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17612412 Transformer Top-Oil Temperature Modeling and Simulation
Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende
Abstract:
The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24952411 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks
Authors: O. A. Rahmeh, P. Johnson, S. Lehmann
Abstract:
Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.
Keywords: Complex networks, grid networks, load-balancing, random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882410 Stochastic Estimation of Cavity Flowfield
Authors: Yin Yin Pey, Leok Poh Chua, Wei Long Siauw
Abstract:
Linear stochastic estimation and quadratic stochastic estimation techniques were applied to estimate the entire velocity flow-field of an open cavity with a length to depth ratio of 2. The estimations were done through the use of instantaneous velocity magnitude as estimators. These measurements were obtained by Particle Image Velocimetry. The predicted flow was compared against the original flow-field in terms of the Reynolds stresses and turbulent kinetic energy. Quadratic stochastic estimation proved to be more superior than linear stochastic estimation in resolving the shear layer flow. When the velocity fluctuations were scaled up in the quadratic estimate, both the time-averaged quantities and the instantaneous cavity flow can be predicted to a rather accurate extent.Keywords: Open cavity, Particle Image Velocimetry, Stochastic estimation, Turbulent kinetic energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17212409 Neural Network Based Predictive DTC Algorithm for Induction Motors
Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad
Abstract:
In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.Keywords: Neural Networks, Predictive DTC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13942408 Stochastic Programming Model for Power Generation
Authors: Takayuki Shiina
Abstract:
We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342407 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI
Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny
Abstract:
Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882406 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16522405 Mamdani Model based Adaptive Neural Fuzzy Inference System and its Application
Authors: Yuanyuan Chai, Limin Jia, Zundong Zhang
Abstract:
Hybrid algorithm is the hot issue in Computational Intelligence (CI) study. From in-depth discussion on Simulation Mechanism Based (SMB) classification method and composite patterns, this paper presents the Mamdani model based Adaptive Neural Fuzzy Inference System (M-ANFIS) and weight updating formula in consideration with qualitative representation of inference consequent parts in fuzzy neural networks. M-ANFIS model adopts Mamdani fuzzy inference system which has advantages in consequent part. Experiment results of applying M-ANFIS to evaluate traffic Level of service show that M-ANFIS, as a new hybrid algorithm in computational intelligence, has great advantages in non-linear modeling, membership functions in consequent parts, scale of training data and amount of adjusted parameters.Keywords: Fuzzy neural networks, Mamdani fuzzy inference, M-ANFIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52482404 2n Almost Periodic Attractors for Cohen-Grossberg Neural Networks with Variable and Distribute Delays
Abstract:
In this paper, we investigate dynamics of 2n almost periodic attractors for Cohen-Grossberg neural networks (CGNNs) with variable and distribute time delays. By imposing some new assumptions on activation functions and system parameters, we split invariant basin of CGNNs into 2n compact convex subsets. Then the existence of 2n almost periodic solutions lying in compact convex subsets is attained due to employment of the theory of exponential dichotomy and Schauder-s fixed point theorem. Meanwhile, we derive some new criteria for the networks to converge toward these 2n almost periodic solutions and exponential attracting domains are also given correspondingly.
Keywords: CGNNs, almost periodic solution, invariant basins, attracting domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13822403 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16682402 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.
Keywords: Artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362401 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.
Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41112400 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays
Abstract:
In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.
Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152399 Artificial Neural Network Development by means of Genetic Programming with Graph Codification
Authors: Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, Javier Pereira
Abstract:
The development of Artificial Neural Networks (ANNs) is usually a slow process in which the human expert has to test several architectures until he finds the one that achieves best results to solve a certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically generating ANNs. To do this, the GP algorithm had to be changed in order to work with graph structures, so ANNs can be developed. This technique also allows the obtaining of simplified networks that solve the problem with a small group of neurons. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases. The results of those comparisons show that the system achieves good results comparable with the already existing techniques and, in most of the cases, they worked better than those techniques.Keywords: Artificial Neural Networks, Evolutionary Computation, Genetic Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14642398 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses
Abstract:
In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.
Keywords: Almost periodic solution, exponential stability, neural networks, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143372397 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20392396 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14312395 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.
Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18942394 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression
Authors: S. Anna Durai, E. Anna Saro
Abstract:
In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16762393 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks
Authors: O. Yavuz, L. Ozyilmaz
Abstract:
HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11822392 Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks
Authors: G. R. Rameshkumar, B. V. A Rao, K. P. Ramachandran
Abstract:
Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.Keywords: Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29942391 Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays
Authors: Ridha Ghayoula, Mbarek Traii, Ali Gharsallah
Abstract:
In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.Keywords: Multibeam, modelling, neural networks, synthesis, antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12342390 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908