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Abstract—An animal behavior problem is presented in the form 

of a nest-building task that involves two cooperating virtual birds, a 
male and female. The female builds a nest into which she lays an egg. 
The male's job is to forage in a forest for food for both himself and 
the female. In addition, the male must fetch stones from a nearby 
desert for the female to use as nesting material. The task is completed 
when the nest is built, and an egg is laid in it. A goal-seeking neural 
network and a recurrent neural network were trained and tested with 
little success. The goal-seeking network was then enhanced with 
“place cells”, allowing the birds to spatially navigate the world, 
building the nest while keeping themselves fed. Place cells are 
neurons in the hippocampus that map space. 

 
Keywords—Artificial animal intelligence, artificial life, goal-

seeking neural network, nest-building, place cells, spatial navigation. 

I. INTRODUCTION 

 task is presented to two virtual birds, a male and a 
female, that cooperate in navigation, foraging, 

communication, and nest-building activities. These activities 
are commonly performed in many animal species to ensure 
survival and reproduction. The task is a division of labor for 
the birds: the female builds a nest into which she lays an egg, 
completing the task; the male forages in a forest for food for 
both himself and the female, and obtains stones from a desert 
for the female to use as nesting material.  

The nest-building task was recently proposed as a game 
providing an artificial animal intelligence challenge to 
evaluate machine learning systems [1]. While the task itself is 
independent of how it is tackled, here artificial neural 
networks (ANNs) are chosen, as ANNs are capable of 
generalized learning, and are intended to perform functions of 
the biological neural networks of animals. 

The task was originally introduced in 2001 [2], a solution 
for which was obtained using Mona, a goal-seeking ANN. 
Mona is designed to control autonomous artificial organisms 
by learning cause-and-effect relationships in the environment 
along with responses that enact these causations to navigate 
toward goals. However, the solution at that time employed 
domain-specific macro-responses, such as “Go to mate”.  

In planning to attack the problem again, this time with 
spatial enhancements that would obviate the need for domain-
specific responses, place cells seemed to be a good choice. 
Place cells are neurons located within the hippocampus which 
are triggered in response to an animal entering specific places 
in its local environment, aiding spatial navigation [3]-[5]. In 
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this project an abstraction of place cells is incorporated into 
Mona to allow it to navigate a grid world to accomplish 
foraging and nest-building. It is the author’s belief that 
training an ANN to build a nest is a novel contribution to 
machine learning.  

There is a significant body of work on using place cell 
inspired neural functionality in ANNs, much of it involved 
with robotic navigation [6], [7]. These systems are aimed at 
solving specific tasks with models that mimic biological place 
cells. They are not intended to be general-purpose ANNs, such 
as Mona, which are designed to learn arbitrary domain-
independent tasks. General-purpose ANNs borrow 
functionality from brains, such as neural connection updating, 
but are not intended to be models of biological brains. 

Historically, AI has mostly focused on human-like 
intelligence, for which there are now numerous success 
stories: games, self-driving cars, stock market forecasting, 
medical diagnostics, language translation, image recognition, 
etc. The impact of ChatGPT [8] as a generative language 
model is a recent example. Yet the elusive goal of artificial 
general intelligence (AGI) seems as far off as ever, likely 
because these success stories lack the “general” property of 
AGI, operating as they do within narrow, albeit deep, 
domains. A language translation application, for example, 
does just that and nothing else. 

Zador [9] expresses this succinctly: "We cannot build a 
machine capable of building a nest, or stalking prey, or 
loading a dishwasher. In many ways, AI is far from achieving 
the intelligence of a dog or a mouse, or even of a spider, and it 
does not appear that merely scaling up current approaches will 
achieve these goals." It is evident that nature has more to teach 
us toward the development of AGI. In general, AIs are 
currently designed to predict the future, whereas animals have 
evolved to cause the future in the pursuit of goals. 

We can go back to Braitenberg’s vehicles [10] as a possible 
starting point for the study of how simple networks are 
capable of controlling goal-directed behavior in automata. 
Dyer [11] delineated the contrasting aims of ANNs for animal 
behavior vs. traditional artificial intelligence (AI) by framing 
the former as having biological goals: “Survivability is the 
overriding task”. As an example of a simulated animal brain, 
Coleman et al. [12] developed an ANN-based cognitive-
emotional forager that performed well in a task that required 
not only foraging, but also the avoidance of predators. 

The foraging problem is a common task for swarm robotics, 
since a swarm of cooperating agents can cover an area 
efficiently. Ericksen et al. [13] developed a successful swarm 
seed forager using NEAT (Neuroevolution of Augmented 

Nest-Building Using Place Cells for Spatial 
Navigation in an Artificial Neural Network 

Thomas E. Portegys 

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024 

686International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
91

1.
pd

f



Topologies) created by Stanley and Miikkulainen [14]. NEAT 
evolves a neural network topology that controls behavior 
which maximizes a fitness score, in their case defined by one 
point for picking up a seed and two points for returning it to 
the nest. In contrast, the Mona ANN in this project is trained 
from experience with the environment rather than through 
evolution. Mona additionally employs needs and goals as a 
motivation mechanism. 

Another example of artificial creatures controlled by ANNs 
is Yaeger’s Polyworld artificial life system [15]. Polyworld is 
an environment in which a population of agents search for 
food, mate, have offspring, and prey on each other in a two-
dimensional world. An individual makes decisions based on 
its neural network which is derived from its genome, which in 
turn is subject to evolution. 

In addition to simulating life forms, ANNs have been used 
as modeling and analysis tools for animal behavior [16], [17].  

As a comparison, an LSTM (Long short-term memory) 
recurrent neural network (RNN) [18] was also trained on the 
task, without spatial enhancement. 

II. DESCRIPTION 

The code with instructions is available at [19]. 

World 

The world is a 21x21 two-dimensional grid of cells. Each 
cell has a locale, and an object attribute. Locale describes the 
type of terrain: plain, forest, and desert. An object is an item 
to be found in the world: mouse (food), and stone (nest-
building material). A forest exists in the upper left of the 
world, populated by mice, which randomly move about, 
providing an element of surprise for a foraging bird. A desert 
is found in the lower right of the world, where stones are to be 
found at various locations. The birds are initially located on 
the plain in the center of the world. 

Birds 

There is a male and a female bird. The female builds the 
nest and the male forages for mice and stones. The nest is a 
stone ring in the center of the world in which the female lays 
her egg. The birds have four components: senses, internal 
state, needs, and responses. These are sex-specific to suit the 
different roles of the birds.  

Male 

Senses: locale, mouse-proximity, stone-proximity, mate-
proximity, goal, has-object, flying, female-needs-mouse, 
female-needs-stone. 

Locale pertains to the current location of the male and has a 
value of plain, forest, or desert.  

The proximity sensor values are present, left, right, forward, 
or unknown. The mouse-proximity sensor senses a mouse 
when in the forest, the stone-proximity sensor senses a stone 
when in the desert, and the female-proximity sensor senses the 
female within the bounds of the nest. 

The goal sensor values are eat-mouse, mouse-for-female, 
stone-for-female, and attend-female.  

The has-object sensor indicates an object carried by the bird 
and can be mouse, stone, or no-object.  

The flying sensor is true when the male is in flight; 
otherwise false. 

Female-needs-mouse is sensed when the female expresses a 
corresponding response of want-mouse in the presence of the 
male. This is the only time this sense is active; when not in the 
presence of the female it is in the off state. A similar process 
exists for the female-needs-stone sense and want-stone female 
response. Only one of the female-needs/wants is 
sensed/expressed at a time.  

Internal state: food. 
Food is initialized to a parameterized value. When food 

reaches zero, the need for a mouse is surfaced as a goal. Upon 
eating a mouse, food is increased by a random value. 

Needs: mouse-need, female-mouse-need, female-stone-
need, attend-female-need. 

Needs correspond to goals: mouse-need to the goal eat-
mouse, female-mouse-need to mouse-for-female, female-stone-
need to stone-for-female, and attend-female-need to attend-
female. Upon completion of an errand to satisfy a goal, 
signified by returning to the female, the next goal is 
determined by current needs. As discussed, mouse-need is 
raised when food reaches 0. The female-mouse-need and 
female-stone-need are signaled to the male by the female when 
she desires a mouse to eat or a stone to place in the nest, 
respectively. If none of the above are raised, the attend-
female-need is raised, causing the male to move to the 
female’s location. 

Responses:  
 do-nothing: a no-op response. 
 move-forward: move forward in the orientation direction. 

Movement off the grid is a no-op. 
 turn-right/left: change orientation by 90 degrees. 
 eat-mouse: eat mouse if has-object is a mouse. If no 

mouse, this is a no-op. 
 get-object: if has-object is empty and an object in current 

cell, pick up the object and set it to has-object. 
 put-object: if has-object not empty and no object at 

current cell, put object in cell and clear has-object. 
 give-mouse: if has-object is mouse, and female present 

with empty has-object, transfer mouse to female. 
 give-stone: if has-object is stone, female present with 

empty has-object, transfer stone to female. 
 fly: take flight. This activates a place motor neuron which 

will move to a specific location in the world. The specific 
motor is determined by the current mediator neuron 
context (see Artificial neural networks section). 

 alight: terminate flight after arriving at a location in the 
world determined by the active place motor neuron. 

Female 

Senses: object-sensors, orientation, goal, has-object. 
Object-sensors: the female senses the object values in its 

Moore (3x3) neighborhood. 
Orientation: north, south, east and west. 
Goal: lay-egg, brood-egg, eat-mouse. 
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Has-object: identical to male. 
Internal state: food. 
Food is initialized to a parameterized value. When food 

reaches zero, the need for a mouse is surfaced as a goal. Upon 
eating a mouse, food is increased by a random value. 

Needs: lay-egg-need, brood-egg-need, mouse-need. 
The mouse-need need is raised by food level and sets the 

eat-mouse goal. It will cause the female to express the want-
mouse response. While building the nest and not hungry, the 
lay-egg-need is kept raised with the associated lay-egg goal. 
The female asserts the want-stone response when she is 
located in a cell where the nest requires a stone to be placed. 
After a stone is placed, the female proceeds to the next 
location in the nest and repeats the process, continuously 
motivated by the lay-egg-need and lay-egg goal. When the 
nest is built, the female lays her egg in the center of the nest. 
After that brood-egg-need is kept raised and the brood-egg 
goal keeps the female brooding on the egg. 

Responses:  
 do-nothing: a no-op response. 
 move-forward: move forward in the orientation direction. 

Movement off the grid is a no-op. 
 turn-right/left: change orientation by 90 degrees. 
 eat-mouse: eat mouse if has-object is a mouse. If no 

mouse, this is a no-op. 
 get-object: if has-object is empty and object in current 

cell, pick up the object and set it to has-object. 
 put-object: if has-object and no object in current cell, put 

object in cell and clear has-object. 
 want-mouse: when the eat-mouse goal is sensed, the 

want-mouse response signals the male to retrieve a mouse 
from the forest for the female to eat. 

 want-stone: when the lay-egg goal is sensed, and the 
female is ready to place a stone in the nest, the want-stone 
response signals the male to retrieve a stone from the 
desert for the female to place in the nest. 

 lay-egg: when the female has completed the nest and has 
moved to its center, she lays the egg with this response. 

Artificial Neural Networks 

Mona 

Mona learns cause-and-effect chains and hierarchies of 
neurons that represent corresponding relationships in the 
environment. A detailed description of the architecture can be 
found in [2]. An overview is provided here. 

Three types of neurons are defined, as shown in Fig. 1: 
 Receptor neuron: represents a sensory event. 
 Motor neuron: expresses response to the environment. 
 Mediator neuron: represents a predictive relationship 

between neurons. The firing of its cause neuron enables 
its motor neuron to fire, producing a response. If the 
network fires the motor neuron, the effect neuron will 
probabilistically fire. A mediator that mediates lower 
level mediators serves as a context that recursively affects 
the probability of causation in its components. 

 

 

Fig. 1 A simple Mona network 
 

Mona is a goal-seeking network, falling into the category of 
a model-based reinforcement learning system [20]. Needs 
arising from internal and external sources are satisfied by the 
firing of associated goal neurons. For example, a need for 
water is satisfied by firing neurons involved with drinking 
water. Need drives backward through the network from a goal 
neuron as motive, following enabled pathways to fire a motor 
response that will navigate toward the goal. 

Multiple needs can vie for control. For example, food and 
thirst might both act on the network simultaneously. The 
winner will be a function of the strength of the need and the 
enablement of the network to achieve the goal. 

In the nest-building task, the male learns a network 
consisting of chains of mediators that drives it to the forest 
when it needs a mouse to eat, then returns it to the female for 
further goal setting. It also learns mediators that orchestrate 
fetching mice and stones for the female. A powerful feature of 
Mona is that mediators are modular, that is, they can take part 
in multiple goal activities. For example, the mediators that fly 
the male to the forest and hunt for a mouse are used when both 
the male and female require a mouse. 

The female’s need to lay an egg, in conjunction with the 
goal of sensing the egg in the nest, drives through a chain of 
mediators that orchestrate a series of nest-building actions, 
each of which involves expressing a want for a stone that 
signals the male to fetch a stone, placing the stone, and 
moving to the next location until the nest is entirely 
constructed. The female then moves to the center of the nest 
and lays her egg, satisfying the egg laying need. Then the need 
to brood the egg is raised, which keeps the female sitting on 
the egg. 

Bird responses are trained by overriding incorrect responses 
with correct ones. The correct responses are incorporated into 
the network. During testing, responses are generated by the 
network. Mona is also capable of being trained in an animal-
like manner through operant conditioning [21], a learning 
process where behaviors are modified through the association 
of stimuli with reinforcement. However, as animal trainers 
will attest, this process is slow and laborious. 

Place Motor Neurons 

To enhance Mona with place cell functionality, a place 
motor neuron was implemented. A biological place neuron 
fires when a specific location in the world is reached. Mona’s 
place neurons fire similarly. However, they also navigate to 
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specific places in the world. A related capability seems to exist 
in the form of route encoding in rats [22]. 

In Mona, a place neuron is implemented as a motor neuron 
that records a specific location in the world and will navigate 
to that location when motivated to respond. It fires when the 
location is reached. For example, when the male’s goal is to 
fetch a mouse for the female, a mediator with a cause of 
sensing the female’s want of a mouse, and an effect of sensing 
the proximity of a mouse in the forest will fire its place motor 
to enact a series of primitive movement responses that 
navigate to a prescribed location in the forest. 

Place motors can be learned while exploring the world by 
marking significant locations. A special response initiates the 
commencement of a sequence of movements that terminate at 
some location, at which time another special response marks 
the location, creating a new place motor neuron. In the nesting 
birds, these two special responses are mapped to the male fly 
and alight responses, respectively. 

LSTM 

The LSTM, introduced in 1997 [18], is a recurrent neural 
network which has established itself as a workhorse for 
sequential pattern recognition. LSTMs address a problem with 
other recurrent neural networks in which corrective 
information vanishes as the time lag between the output and 
the relevant input increases, leading to the inability to train 
long-term state information. 

 

 

Fig. 2 LSTM memory block 
 

In the LSTM network, the hidden units of a neural network 
are replaced by memory blocks, each of which contains one or 
more memory cells. A memory block is shown in Fig. 2. The 
block can latch and store state information indefinitely, 
allowing long-term temporal computation. What information 
to store, and when to output that information are part of the 
training process. 

Scenario 

The scenario is taken from the game proposal [1], which 
illustrates the task from a general viewpoint. It shows 
intermittent states of the world, from initial state to egg-laying 
in the completed nest. A video is available [23].  

 

 

Fig. 3 Beginning state: female is hungry (0 food), male has maximum food; initial response for both is “do nothing”; both are located at center 
of world; upper left is forest with mice (food); lower right is desert with stones for nest-building 
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Fig. 4 While co-located, female signals to male with “want food” response; male flies to forest and picks up a mouse to feed to her 
 

 

Fig. 5 Female moves to location of first nesting stone; male follows her; she signals to male that she wants a stone; male flies to desert and 
picks up a stone 
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Fig. 6 Male returns to female with stone; discovers she is hungry; he flies to forest for mouse for her 
 

 

Fig. 7 Nest completed; egg laid  
 

III. RESULTS 

Two ANNs were trained and tested on the task under 
varying conditions: 
1. Mona version 6.1. There are a maximum of 500 mediator 

neurons. There is a maximum mediator level of 0, 

meaning mediators mediated receptor and motor neurons 
exclusively; higher level mediators that mediate lower 
level mediators were not needed. 

2. An LSTM recurrent neural network using the Keras 2.6.0 
python package. There are 128 neurons in a hidden layer, 
with a mean squared error loss function. Input and output 
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were one-hot encoded. Training was conducted with 500 
epochs. 

Number of Training Datasets 

Performance was measured based on the number of training 
datasets, as shown in Figs. 8 and 9. A training dataset is 
generated by running the nesting birds with optimal bird 
responses until the nest is completed while keeping the birds 

fed.  
Each run is seeded with a different random number that 

controls the movements of the mice in the forest and how long 
eating a mouse serves to satisfy a bird’s hunger. The testing 
accuracy was calculated as the percent of correct responses out 
of 1000 steps. Measurements were based on the mean values 
of 20 trials. Very little variance in values was observed.  

 

 

Fig. 8 Female test performance with number of training datasets 
 

 

Fig. 9 Male test performance with number of training datasets 
 

Both networks show excellent performance with only a 
single training dataset. 

Dynamic Testing 

Mona performance is measured as it interacts with the 
world. That is, responses output to the world cause changes in 
the world that are subsequently input to the bird. For example, 
if the bird turns to the left, the world reacts by altering the 
sensory state of the bird accordingly. With place motor 
neurons, Mona solves the task every time, but without place 
motors the male bird, which must perform complex navigation 
to fetch mice and stones, repeatedly becomes lost, causing the 
entire task to fail. 

When the same “dynamic” interface is applied to the RNN 
network the male bird repeatedly becomes lost while fetching 
mice or stones. This means that even the few errors that the 
male makes are crucial, preventing successful completion. If 
the male cannot return with a mouse for the female, for 
example, the female cannot proceed with nest building. 

RNN Epoch Testing 

Mona trains in a single epoch, a skill frequently seen in 
human learning [24]. The RNN training is significantly 
affected by the number of epochs of training, especially for the 
male, as shown in Fig. 10. 
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Fig. 10 Training epochs testing 
 

IV. CONCLUSION 

Enhanced with place motor neurons, Mona is capable of 
solving the nest-building task every time. The RNN performs 
well with its typical usage, which is to predict upcoming 
responses, but fails as a navigator for the male bird, causing 
nest-building to be unsuccessful. How place neuron 
functionality might be incorporated into an RNN is an 
interesting topic. 

Place motor neurons and goal-seeking causation learning 
are a powerful combination of capabilities for the nest-
building task which demands both spatial and sequential 
learning. This animal learning task exposes shortcomings in a 
deep learning ANN that researchers interested in AGI should 
be aware of. We recommend that further research is conducted 
to (1) further simulate animal behaviors, and (2) adopt 
mechanisms from neurobiology, such as place cells, that allow 
machines to acquire animal-like capabilities. These we think 
are essential to the achievement of AGI. 

CONFLICT OF INTEREST 

There are no conflicts of interest concerning this work. 

REFERENCES 
[1] Portegys, T.E. (2022). I want to play a game. 

https://www.researchgate.net/publication/364089546_I_WANT_TO_PL
AY_A_GAME 

[2] Portegys, T.E. (2001). Goal-Seeking Behavior in a Connectionist Model. 
Artificial Intelligence Review 16, 225–253 (2001). 
https://doi.org/10.1023/A:1011970925799 

[3] Moser M.B., Rowland D.C., Moser E.I. Place cells, grid cells, and 
memory. (2015). Cold Spring Harbor Perspectives in Biology. Feb 
2;7(2):a021808. doi: 10.1101/cshperspect.a021808. PMID: 25646382; 
PMCID: PMC4315928. 

[4] Robinson, N. T. M., Descamps, L. A. L., Russell, L. E., Buchholz, M. 
O., Bicknell, B. A., Antonov, G. K., Lau, J. Y. N., Nutbrown, R., 
Schmidt-Hieber, C., Häusser, M. (2020). Targeted activation of 
hippocampal place cells drives memory-guided spatial behavior. Cell, 
183, pp. 1586-1599. 

[5] Xu, H., Baracskay, P., O’Neill, J., and Csicsvari, J. (2019). Assembly 
responses of hippocampal CA1 place cells predict learned behavior in 
goal-directed spatial tasks on the radial eight-arm maze. Neuron 101, 
119–132. 

[6] Milford, M. and Wyeth, G., (2010). Persistent navigation and mapping 
using a biologically inspired SLAM system, Int. J. Robot. Res. 29:1131–
1153. 

[7] Zhou, X., Weber, C. and Wermter, S., (2017). Robot localization and 
orientation detection based on place cells, Proc. ICANN 2017, Springer 

pp. 137–145. 
[8] OpenAI. (2023). ChatGPT (Mar 14 version) Large language model. 

https://chat.openai.com/chat 
[9] Zador, A. (2019). A critique of pure learning and what artificial neural 

networks can learn from animal brains. Nature Communications volume 
10, Article number: 3770. https://www.nature.com/articles/s41467-019-
11786-6  

[10] Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. 
Cambridge, MA: MIT Press. "Vehicles - the MIT Press". Archived from 
the original on 2010-01-29. Retrieved 2012-06-18. 

[11] Dyer, M.G. (1993). Toward Synthesizing Artificial Neural Networks 
that Exhibit Cooperative Intelligent Behavior: Some Open Issues in 
Artificial Life. Artificial Life, vol. 1, no. 1_2, pp. 111-134, Oct. 1993, 
doi: 10.1162/artl.1993.1.1_2.111.  

[12] Coleman S.L., Brown V.R., Levine D.S., Mellgren R.L. (2005). A neural 
network model of foraging decisions made under predation risk. Cogn 
Affect Behav Neurosci. 2005 Dec;5(4):434-51. doi: 
10.3758/cabn.5.4.434. PMID: 16541813. 

[13] Ericksen, J., Moses, M. and Forrest, S. (2017). Automatically evolving a 
general controller for robot swarms. 2017 IEEE Symposium Series on 
Computational Intelligence (SSCI), Honolulu, HI, USA, 2017, pp. 1-8, 
doi: 10.1109/SSCI.2017.8285399 

[14] Stanley, K. O. and R. Miikkulainen, R. (2002). Evolving neural 
networks through augmenting topologies. Evolutionary computation, 
vol. 10, no. 2, pp. 99–127. 

[15] Lizier, J.T., Piraveenan, M., Pradhana, D., Prokopenko, M., Yaeger, L.S. 
Functional and Structural Topologies in Evolved Neural Networks. 
ECAL 2009. 

[16] Enquist, M. and Ghirlanda, S. (2006). Neural Networks and Animal 
Behavior. Volume 33 in the series Monographs in Behavior and Ecology 
Published by Princeton University Press. 
https://doi.org/10.1515/9781400850785 

[17] Wijeyakulasuriya, D.A., Eisenhauer, E.W., Shaby, B.A., Hanks E.M. 
(2020). Machine learning for modeling animal movement. PLoS ONE 
15(7): e0235750. https://doi.org/10.1371/journal.pone.0235750 

[18] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. 
Neural Computation, 9(8), 1735-1780. 

[19] Code with instructions: https://github.com/morphognosis/NestingBirds 
[20] Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M. (2023). Model-

based Reinforcement Learning: A Survey. Foundations and Trends in 
Machine Learning Series. Now Publishers. 
https://books.google.com/books?id=FimgzwEACAAJ 

[21] Jenkins, H. M. (1979). Animal Learning & Behavior Theory. Ch. 5 in 
Hearst, E. The First Century of Experimental Psychology Hillsdale N. J., 
Earlbaum. 

[22] Grieves R. M., Wood E. R., Dudchenko P. A. (2016). Place cells on a 
maze encode routes rather than destinations. Elife. Jun 10;5:e15986. doi: 
10.7554/eLife.15986. 

[23] Scenario video: https://youtu.be/d13hxhltsGg 
[24] Lee, S.W., O’Doherty, J.P., Shimojo, S., (2015). Neural computations 

mediating one-shot learning in the human brain. PLoS biology 13. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024 

693International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
91

1.
pd

f


