Search results for: Hypersonic Flow
2031 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22562030 Flow and Heat Transfer Mechanism Analysis in Outward Convex Asymmetrical Corrugated Tubes
Authors: Huaizhi Han, Bingxi Li, Yurong He, Rushan Bie, Zhao Wu
Abstract:
The flow and heat transfer mechanism in convex corrugated tubes have been investigated through numerical simulations in this paper. Two kinds of tube types named as symmetric corrugated tube (SCT) and asymmetric corrugated tube (ACT) are modeled and studied numerically based on the RST model. The predictive capability of RST model is examined in the corrugation wall in order to check the reliability of RST model under the corrugation wall condition. We propose a comparison between the RST modelling the corrugation wall with existing direct numerical simulation of Maaß C and Schumann U [14]. The numerical results pressure coefficient at different profiles between RST and DNS are well matched. The influences of large corrugation tough radii to heat transfer and flow characteristic had been considered. Flow and heat transfer comparison between SCT and ACT had been discussed. The numerical results show that ACT exhibits higher overall heat transfer performance than SCT.Keywords: Asymmetric corrugated tube, RST, DNS, flow and heat transfer mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20002029 Unsteady Aerodynamics of Multiple Airfoils in Configuration
Authors: Hossain Aziz, Rinku Mukherjee
Abstract:
A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20592028 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.
Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892027 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration
Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad
Abstract:
A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27012026 Analysis of Slip Flow Heat Transfer between Asymmetrically Heated Parallel Plates
Authors: Hari Mohan Kushwaha, Santosh K. Sahu
Abstract:
In the present study, analysis of heat transfer is carried out in the slip flow region for the fluid flowing between two parallel plates by employing the asymmetric heat fluxes at surface of the plates. The flow is assumed to be hydrodynamically and thermally fully developed for the analysis. The second order velocity slip and viscous dissipation effects are considered for the analysis. Closed form expressions are obtained for the Nusselt number as a function of Knudsen number and modified Brinkman number. The limiting condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 is considered and found to agree well with other analytical results.Keywords: Knudsen Number, Modified Brinkman Number, Slip Flow, Velocity Slip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14332025 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet
Authors: A. T. Eswara
Abstract:
This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942024 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series
Authors: Mohammad H. Fattahi
Abstract:
Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.
Keywords: Chaotic behavior, wavelet, noise reduction, river flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952023 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct
Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh
Abstract:
In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21552022 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts
Authors: Lin Cheng, Zijiang Yang
Abstract:
Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.Keywords: program synthesis, flow chart, specification, graph recognition, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8212021 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown
Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson
Abstract:
This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.
Keywords: Capacity randomness, flow breakdown, freeway capacity, rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12992020 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System
Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz
Abstract:
Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis has been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.Keywords: Attenuator, CFD, nanofiber, spun-bond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18812019 Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller
Authors: Lütfü Saribulut, Mehmet Tümay, İlyas Eker
Abstract:
FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.Keywords: FACTS, Fuzzy Logic Controller, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28822018 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts
Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli
Abstract:
This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular ductKeywords: Heat transfer, turbulence, rectangular duct, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14512017 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-
Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.
Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23252016 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES
Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh
Abstract:
In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25252015 Quantitative Estimation of Periodicities in Lyari River Flow Routing
Authors: Rana Khalid Naeem, Asif Mansoor
Abstract:
The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.Keywords: Diagnostic checks, Lyari river, Model selection, Monthly waste flow, Periodicity, Periodic autoregressive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16482014 Behavior of Droplets in Microfluidic System with T-Junction
Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud
Abstract:
Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.
Keywords: Microfluidic system, micro droplets generation, T-junction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16182013 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel
Authors: Omer F. Can, Nevin Celik
Abstract:
In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31822012 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques
Authors: T. J. Jamaleddine
Abstract:
Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.Keywords: CFD, gas-solids flow, gas purging, species transport, purge column, degasser vessel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6642011 Counterpropagation Neural Network for Solving Power Flow Problem
Authors: Jayendra Krishna, Laxmi Srivastava
Abstract:
Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24302010 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks
Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada
Abstract:
Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.Keywords: Optical burst switching, OBS, flow rate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17062009 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror
Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin
Abstract:
The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).
Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29372008 Flow Field Analysis of Submerged Horizontal Plate Type Breakwater
Authors: Ke Wang, Zhi-Qiang Zhang, Z. Chen
Abstract:
A submerged horizontal plate type breakwater is pointed out as an efficient wave protection device for cage culture in marine fishery. In order to reveal the wave elimination principle of this type breakwater, boundary element method is utilized to investigate this problem. The flow field and the trajectory of water particles are studied carefully. The flow field analysis shows that: the interaction of incident wave and adverse current above the plate disturbs the water domain drastically. This can slow down the horizontal velocity and vertical velocity of the water particles.Keywords: boundary element method, plate type breakwater, flow field analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20912007 The Application of the Queuing Theory in the Traffic Flow of Intersection
Authors: Shuguo Yang, Xiaoyan Yang
Abstract:
It is practically significant to research the traffic flow of intersection because the capacity of intersection affects the efficiency of highway network directly. This paper analyzes the traffic conditions of an intersection in certain urban by the methods of queuing theory and statistical experiment, sets up a corresponding mathematical model and compares it with the actual values. The result shows that queuing theory is applied in the study of intersection traffic flow and it can provide references for the other similar designs.
Keywords: Intersection, Queuing theory, Statistical experiment, System metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75422006 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.
Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23102005 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis
Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria
Abstract:
This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29162004 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49112003 On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer
Authors: Carmen D. Pricinâ, E. Corina Cipu, Victor Ţigoiu
Abstract:
The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.
Keywords: Non newtonian fluid flow, orthogonal rheometer, third grade fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14682002 Active Power Flow Control Using A TCSC Based Backstepping Controller in Multimachine Power System
Authors: Naimi Abdelhamid, Othmane Abdelkhalek
Abstract:
With the current rise in the demand of electrical energy, present-day power systems which are large and complex, will continue to grow in both size and complexity. Flexible AC Transmission System (FACTS) controllers provide new facilities, both in steady state power flow control and dynamic stability control. Thyristor Controlled Series Capacitor (TCSC) is one of FACTS equipment, which is used for power flow control of active power in electric power system and for increase of capacities of transmission lines. In this paper, a Backstepping Power Flow Controller (BPFC) for TCSC in multimachine power system is developed and tested. The simulation results show that the TCSC proposed controller is capable of controlling the transmitted active power and improving the transient stability when compared with conventional PI Power Flow Controller (PIPFC).
Keywords: FACTS, Thyristor Controlled Series Capacitor (TCSC), Backstepping, BPFC, PIPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795