Search results for: Financing and Genetic Algorithms.
1826 Analysis of Supply Side Factors Affecting Bank Financing of Non-Oil Exports in Nigeria
Authors: Sama’ila Idi Ningi, Abubakar Yusuf Dutse
Abstract:
The banking sector poses a lot of problems in Nigeria in general and the non-oil export sector in particular. The banks' lack effectiveness in handling small, medium or long-term credit risk (lack of training of loan officers, lack of information on borrowers and absence of a reliable credit registry) results in non-oil exporters being burdened with high requirements, such as up to three years of financial statements, enough collateral to cover both the loan principal and interest (including a cash deposit that may be up to 30% of the loans' net present value), and to provide every detail of the international trade transaction in question. The stated problems triggered this research. Consequently, information on bank financing of non-oil exports was collected from 100 respondents from the 20 Deposit Money Banks (DMBs) in Nigeria. The data was analysed by the use of descriptive statistics correlation and regression. It is found that, Nigerian banks are participants in the financing of non-oil exports. Despite their participation, the rate of interest for credit extended to non-oil export is usually high, ranging between 15-20%. Small and medium sized non-oil export businesses lack the credit history for banks to judge them as reputable. Banks also consider the non-oil export sector very risky for investment. The banks actually do grant less credit than the exporters may require and therefore are not properly funded by banks. Banks grant very low volume of foreign currency loan in addition to, unfavorable exchange rate at which Naira is exchanged to the Dollar and other currencies in the country. This makes importation of inputs costly and negatively impacted on the non-oil export performance in Nigeria.
Keywords: Supply Side Factors, Bank Financing, Non-Oil Exports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27101825 Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter
Authors: S. Saehana, F. Iskandar, M. Abdullah, Khairurrijal
Abstract:
A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.
Keywords: Diameter, Electrospinning, GA, Nanofiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29541824 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411823 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9781822 Affine Projection Adaptive Filter with Variable Regularization
Authors: Young-Seok Choi
Abstract:
We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.Keywords: Affine projection, regularization, gradient descent, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091821 An Effective Genetic Algorithm for a Complex Real-World Scheduling Problem
Authors: Anis Gharbi, Mohamed Haouari, Talel Ladhari, Mohamed Ali Rakrouki
Abstract:
We address a complex scheduling problem arising in the wood panel industry with the objective of minimizing a quadratic function of job tardiness. The proposed solution strategy, which is based on an effective genetic algorithm, has been coded and implemented within a major Tunisian company, leader in the wood panel manufacturing. Preliminary experimental results indicate significant decrease of delivery times.
Keywords: Genetic algorithm, heuristic, hybrid flowshop, total weighted squared tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391820 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms
Authors: Ching-Fen Jiang
Abstract:
Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.Keywords: edge detection, ultrasonic images, speckle noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14821819 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811818 Genetic Programming Approach to Hierarchical Production Rule Discovery
Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj
Abstract:
Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501817 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling
Authors: Adesoji T. Jaiyeola, Josiah Adeyemo
Abstract:
This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601816 A Genetic-Algorithm-Based Approach for Audio Steganography
Authors: Mazdak Zamani , Azizah A. Manaf , Rabiah B. Ahmad , Akram M. Zeki , Shahidan Abdullah
Abstract:
In this paper, we present a novel, principled approach to resolve the remained problems of substitution technique of audio steganography. Using the proposed genetic algorithm, message bits are embedded into multiple, vague and higher LSB layers, resulting in increased robustness. The robustness specially would be increased against those intentional attacks which try to reveal the hidden message and also some unintentional attacks like noise addition as well.
Keywords: Artificial Intelligence, Audio Steganography, DataHiding, Genetic Algorithm, Substitution Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31151815 Genetic Content-Based MP3 Audio Watermarking in MDCT Domain
Authors: N. Moghadam, H. Sadeghi
Abstract:
In this paper a novel scheme for watermarking digital audio during its compression to MPEG-1 Layer III format is proposed. For this purpose we slightly modify some of the selected MDCT coefficients, which are used during MPEG audio compression procedure. Due to the possibility of modifying different MDCT coefficients, there will be different choices for embedding the watermark into audio data, considering robustness and transparency factors. Our proposed method uses a genetic algorithm to select the best coefficients to embed the watermark. This genetic selection is done according to the parameters that are extracted from the perceptual content of the audio to optimize the robustness and transparency of the watermark. On the other hand the watermark security is increased due to the random nature of the genetic selection. The information of the selected MDCT coefficients that carry the watermark bits, are saves in a database for future extraction of the watermark. The proposed method is suitable for online MP3 stores to pursue illegal copies of musical artworks. Experimental results show that the detection ratio of the watermarks at the bitrate of 128kbps remains above 90% while the inaudibility of the watermark is preserved.Keywords: Content-Based Audio Watermarking, Genetic AudioWatermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151814 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way
Authors: Roelien Goede
Abstract:
Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30961813 Forecasting Foreign Direct Investment with Modified Diffusion Model
Authors: Bi-Huei Tsai
Abstract:
Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121812 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model
Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek
Abstract:
Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19611811 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming
Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22431810 Comparative Analysis of Different Page Ranking Algorithms
Authors: S. Prabha, K. Duraiswamy, J. Indhumathi
Abstract:
Search engine plays an important role in internet, to retrieve the relevant documents among the huge number of web pages. However, it retrieves more number of documents, which are all relevant to your search topics. To retrieve the most meaningful documents related to search topics, ranking algorithm is used in information retrieval technique. One of the issues in data miming is ranking the retrieved document. In information retrieval the ranking is one of the practical problems. This paper includes various Page Ranking algorithms, page segmentation algorithms and compares those algorithms used for Information Retrieval. Diverse Page Rank based algorithms like Page Rank (PR), Weighted Page Rank (WPR), Weight Page Content Rank (WPCR), Hyperlink Induced Topic Selection (HITS), Distance Rank, Eigen Rumor, Distance Rank Time Rank, Tag Rank, Relational Based Page Rank and Query Dependent Ranking algorithms are discussed and compared.
Keywords: Information Retrieval, Web Page Ranking, search engine, web mining, page segmentations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42871809 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.
Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241808 Time Comparative Simulator for Distributed Process Scheduling Algorithms
Authors: Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi Hasan, Izzatdin Abdul Aziz, Wirdhayu Mohd Wahid
Abstract:
In any distributed systems, process scheduling plays a vital role in determining the efficiency of the system. Process scheduling algorithms are used to ensure that the components of the system would be able to maximize its utilization and able to complete all the processes assigned in a specified period of time. This paper focuses on the development of comparative simulator for distributed process scheduling algorithms. The objectives of the works that have been carried out include the development of the comparative simulator, as well as to implement a comparative study between three distributed process scheduling algorithms; senderinitiated, receiver-initiated and hybrid sender-receiver-initiated algorithms. The comparative study was done based on the Average Waiting Time (AWT) and Average Turnaround Time (ATT) of the processes involved. The simulation results show that the performance of the algorithms depends on the number of nodes in the system.Keywords: Distributed Systems, Load Sharing, Process Scheduling, AWT and ATT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16241807 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance
Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi
Abstract:
Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.
Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671806 Algorithms for the Fast Computation of PWL and PHL Transforms
Authors: Fituri H Belgassem, Abdulbasit Nigrat, Seddeeq Ghrari
Abstract:
In this paper, the construction of fast algorithms for the computation of Periodic Walsh Piecewise-Linear PWL transform and the Periodic Haar Piecewise-Linear PHL transform will be presented. Algorithms for the computation of the inverse transforms are also proposed. The matrix equation of the PWL and PHL transforms are introduced. Comparison of the computational requirements for the periodic piecewise-linear transforms and other orthogonal transforms shows that the periodic piecewise-linear transforms require less number of operations than some orthogonal transforms such as the Fourier, Walsh and the Discrete Cosine transforms.
Keywords: Piece wise linear transforms, Fast transforms, Fast algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591805 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search
Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur
Abstract:
Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.Keywords: Process planning, scheduling, due-date assignment, genetic algorithm, random search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8351804 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19051803 The Role of Private Equity during Global Crises
Authors: Libena Cernohorska, Veronika Linhartova, Michal Sinka, Petr Teply
Abstract:
The term private equity usually refers to any type of equity investment in an asset in which the equity is not freely tradable on a public stock market. Some researchers believe that private equity contributed to the extent of the crisis and increased the pace of its spread over the world. We do not agree with this. On the other hand, we argue that during the economic recession private equity might become an important source of funds for firms with special needs (e.g. for firms seeking buyout financing, venture capital, expansion capital or distress debt financing). However, over-regulation of private equity in both the European Union and the US can slow down this specific funding channel to the economy and deepen credit crunch during global crises.Keywords: scredit lunch, distress debt, global crisis, private equity, regulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641802 Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem
Authors: A.K.M. Khaled Ahsan Talukder, Taibun Nessa, Kaushik Roy
Abstract:
The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem.Keywords: Genetic Algorithm, Evolutionary Optimization, Multi Objective Optimization, Non-linear Schema Theorem, WCSPP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111801 Use of Novel Algorithms MAJE4 and MACJER-320 for Achieving Confidentiality and Message Authentication in SSL and TLS
Authors: Sheena Mathew, K. Poulose Jacob
Abstract:
Extensive use of the Internet coupled with the marvelous growth in e-commerce and m-commerce has created a huge demand for information security. The Secure Socket Layer (SSL) protocol is the most widely used security protocol in the Internet which meets this demand. It provides protection against eaves droppings, tampering and forgery. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL. But recent attacks against RC4 and HMAC have raised questions in the confidence on these algorithms. Hence two novel cryptographic algorithms MAJE4 and MACJER-320 have been proposed as substitutes for them. The focus of this work is to demonstrate the performance of these new algorithms and suggest them as dependable alternatives to satisfy the need of security services in SSL. The performance evaluation has been done by using practical implementation method.Keywords: Confidentiality, HMAC, Integrity, MACJER-320, MAJE4, RC4, Secure Socket Layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18781800 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151799 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication
Authors: Harish Chander, Balwinder Singh, Ravinder Khanna
Abstract:
In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.
Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12291798 Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm
Authors: Z. Pavlík, J. Žumár, M. Pavlíková, J. Kočí, R. Černý
Abstract:
Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.Keywords: Water vapour transport, gypsum block, transient experiment, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581797 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control
Authors: T. Hussein
Abstract:
In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738