Search results for: Artificial lift
768 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.
The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.
Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559767 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.Keywords: Artificial neural networks, cable, fault location andfault classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851766 Danger Theory and Intelligent Data Processing
Authors: Anjum Iqbal, Mohd Aizaini Maarof
Abstract:
Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.Keywords: artificial immune system, danger theory, intelligent processing, system calls
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882765 Optimization of Artificial Ageing Time and Temperature on Evaluation of Hardness and Resistivity of Al-Si-Mg (Cu or/& Ni) Alloys
Authors: A. Hossain, A. S. W. Kurny
Abstract:
The factors necessary to obtain an optimal heat treatment that influence the hardness and resistivity of Al-6Si-0.5Mg casting alloys with Cu or/and Ni additions were investigated. The alloys were homogenised (24hr at 500oC), solutionized (2hr at 540oC) and artificially ageing at various times and temperatures. The alloys were aged isochronally for 60 minutes at temperatures up to 400oC and isothermally at 150, 175, 200, 225, 250 & 300oC for different periods in the range 15 to 360 minutes. The hardness and electrical resistivity of the alloys were measured for various artificial ageing times and temperatures. From the isochronal ageing treatment, hardness found maximum ageing at 225oC. And from the isothermal ageing treatment, hardness found maximum for 60 minutes at 225oC. So the optimal heat treatment consists of 60 minutes ageing at 225oC.
Keywords: Ageing, Al-Si-Mg alloy, hardness, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064764 Competitive Advantage on the Road Again: Exploring Nuances through a Conceptual Review and Future Research Avenues
Authors: Abdolali Mortazavi, Faegheh Taheran
Abstract:
By giving an overview of previous arguments and findings concerned with the concept of competitive advantage, first, we define the overall concept of competitive advantage and discuss nuances of understanding such an important and strategic idea. Finally, by considering the major concerns of marketing academia, including globalization, Artificial Intelligence (AI)-based technologies, consumer well-being, and internal coopetition between a firm’s units, fruitful avenues to be explored by future studies are presented in the form of research propositions. In the end, relevant gaps mentioned by numerous studies that are worth investigating are demonstrated.
Keywords: Artificial Intelligence, competitive advantage, consumer well-being, coopetition, globalization, literature review, temporary competitive advantage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153763 Proactive Approach to Innovation Management
Authors: Andrus Pedai, Igor Astrov
Abstract:
The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning Computer Technology and Large Connected Information Systems, it is reasonable to predict that during current or the next century intelligence and innovation will be separated from the constraints of human driven management. After this happens, humans will be no longer driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale these developments could result in scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.
Keywords: Artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080762 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman
Abstract:
The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505761 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network
Authors: Farzaneh Ahmadzadeh
Abstract:
Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376760 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano
Abstract:
Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.
Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323759 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.
Keywords: Artificial potential fields, 3-trailer systems, motion planning, posture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149758 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421757 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association
Authors: Djalal Eddine Khodja, Boukhemis Chetate
Abstract:
In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499756 Artificial Intelligence Techniques for Controlling Spacecraft Power System
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control system, which includes either the Neural Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is developed for achieving the coordination between the components of spacecraft power system as well as control the energy flows. The performance of the spacecraft power system is evaluated by comparing two control systems using the NNC and the FLC.Keywords: Spacecraft, Neural network, Fuzzy logic control, Photovoltaic array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948755 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System
Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa
Abstract:
In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593754 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120753 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.
Keywords: Thermodynamic modeling, ANN, solubility, ternary electrolyte system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152752 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.
Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064751 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239750 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404749 Research on User Experience and Brand Attitudes of Chatbots
Authors: Shu-Yin Yu
Abstract:
With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.
Keywords: Brand attitude, chatbot, emotional interaction, user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815748 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.
Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331747 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809746 An Enhanced Artificial Neural Network for Air Temperature Prediction
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.
Keywords: Time-series forecasting, weather modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865745 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal
Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden
Abstract:
Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471744 A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images
Authors: H. Dujmic, V. Papic, H. Turic
Abstract:
The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method.Keywords: Landscape surveillance, mean shift algorithm, image segmentation, target detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396743 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator
Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori
Abstract:
In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.
Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419742 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305741 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422740 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences
Authors: Thomas Schalow
Abstract:
This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.
Keywords: Artificial intelligence, CETI, communication, culture, language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984739 Numerical Study of Flow around Flat Tube between Parallel Walls
Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi
Abstract:
Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.
Keywords: Laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030