Search results for: Data envelopment analysis
10936 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.
Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161610935 Mining User-Generated Contents to Detect Service Failures with Topic Model
Authors: Kyung Bae Park, Sung Ho Ha
Abstract:
Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122110934 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194010933 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure
Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He
Abstract:
This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.
Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384310932 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings
Authors: Sorin Valcan, Mihail Găianu
Abstract:
Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need of labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to a ground truth data generation algorithm for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual labels adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.
Keywords: Labeling automation, infrared camera, driver monitoring, eye detection, Convolutional Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43310931 A New Authenticable Steganographic Method via the Use of Numeric Data on Public Websites
Authors: Che-Wei Lee, Bay-Erl Lai
Abstract:
A new steganographic method via the use of numeric data on public websites with a self-authentication capability is proposed. The proposed technique transforms a secret message into partial shares by Shamir’s (k, n)-threshold secret sharing scheme with n = k + 1. The generated k+1 partial shares then are embedded into the numeric items to be disguised as part of the website’s numeric content, yielding the stego numeric content. Afterward, a receiver links to the website and extracts every k shares among the k+1 ones from the stego numeric content to compute k+1 copies of the secret, and the phenomenon of value consistency of the computed k+1 copies is taken as an evidence to determine whether the extracted message is authentic or not, attaining the goal of self-authentication of the extracted secret message. Experimental results and discussions are provided to show the feasibility and effectiveness of the proposed method.Keywords: Steganography, data hiding, secret authentication, secret sharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167310930 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202010929 Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses
Authors: Yoshifumi Ishizaki, Naoki Kanatani, Masaki Ito, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.Keywords: Route Bus, Path Planning System, GPS, Smart Phone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145610928 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi
Abstract:
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.Keywords: Reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127510927 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482210926 Thermodynamic Study of Uranium Extraction from Tunisian Wet Process Phosphoric Acid
Authors: N. Khleifia, A. Hannachi, N. Abbes
Abstract:
In the present paper, an experimental investigation was conducted to study the thermodynamic of uranium extraction from Tunisian wet phosphoric acid using the synergistic solvent mixture of di-2-ethylhexyl phosphoric acid (DEHPA) and trioctyl phosphine oxid (TOPO) diluted in kerosene. The effect of different factors affecting the extraction process (temperature, TOPO and DEHPA concentrations) has been investigated. The obtained data of temperature effect on the extraction showed that the enthalpy change is -35.8 kJ.mol-1. The slope analysis method was used for determining the stoichiometry of the extracted species.
Keywords: DEHPA-TOPO, extraction, phosphoric acid, stoichiometry, uranium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244110925 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays
Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang
Abstract:
This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.
Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171410924 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: Modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138910923 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective
Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan
Abstract:
In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.
Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190810922 Assessing Stages of Exercise Behavior Change, Self Efficacy and Decisional Balance in Iranian Nursing and Midwifery Students
Authors: Mahnaz Shafakhah, Marzieh Moattari, Rahelae Sabet Sarvestani
Abstract:
Regular physical activity contributes positively to physiological and psychological health. This study aimed to identify exercise behavior changes, self efficacy and decisional balance in nursing and midwifery students. This was a cross-sectional study carried out in Iran.300undergraduate nursing and midwifery students participated in this study. Data were collected using a questionnaire including demographic information, exercise stages of change, exercise self efficacy and pros and cons exercise decisional balance. The analysis was performed using the SPSS.A p-value of less than 0.05 was considered as statistically significant.
Keywords: Exercise, Behavior, Student, Self efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258810921 Collaborative Environmental Management: A Case Study Research of Stakeholders’ Collaboration in the Nigerian Oil-producing Region
Authors: Favour Makuochukwu Orji, Yingkui Zhao
Abstract:
A myriad of environmental issues face the Nigerian industrial region, resulting from; oil and gas production, mining, manufacturing and domestic wastes. Amidst these, much effort has been directed by stakeholders in the Nigerian oil producing regions, because of the impacts of the region on the wider Nigerian economy. Although collaborative environmental management has been noted as an effective approach in managing environmental issues, little attention has been given to the roles and practices of stakeholders in effecting a collaborative environmental management framework for the Nigerian oil-producing region. This paper produces a framework to expand and deepen knowledge relating to stakeholders aspects of collaborative roles in managing environmental issues in the Nigeria oil-producing region. The knowledge is derived from analysis of stakeholders’ practices – studied through multiple case studies using document analysis. Selected documents of key stakeholders – Nigerian government agencies, multi-national oil companies and host communities, were analyzed. Open and selective coding was employed manually during document analysis of data collected from the offices and websites of the stakeholders. The findings showed that the stakeholders have a range of roles, practices, interests, drivers and barriers regarding their collaborative roles in managing environmental issues. While they have interests for efficient resource use, compliance to standards, sharing of responsibilities, generating of new solutions, and shared objectives; there is evidence of major barriers and these include resource allocation, disjointed policy, ineffective monitoring, diverse socio- economic interests, lack of stakeholders’ commitment and limited knowledge sharing. However, host communities hold deep concerns over the collaborative roles of stakeholders for economic interests, particularly, where government agencies and multi-national oil companies are involved. With these barriers and concerns, a genuine stakeholders’ collaboration is found to be limited, and as a result, optimal environmental management practices and policies have not been successfully implemented in the Nigeria oil-producing region. A framework is produced that describes practices that characterize collaborative environmental management might be employed to satisfy the stakeholders’ interests. The framework recommends critical factors, based on the findings, which may guide a collaborative environmental management in the oil producing regions. The recommendations are designed to re-define the practices of stakeholders in managing environmental issues in the oil producing regions, not as something wholly new, but as an approach essential for implementing a sustainable environmental policy. This research outcome may clarify areas for future research as well as to contribute to industry guidance in the area of collaborative environmental management.Keywords: Collaborative environmental management framework, document analysis, case studies, multinational oil companies, Nigerian oil-producing region, stakeholders analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251410920 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation
Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed
Abstract:
The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211710919 The Evaluation of Production Line Performance by Using ARENA – A Case Study
Authors: Muhammad Marsudi, Hani Shafeek
Abstract:
The purpose of this paper is to simulate the production process of a metal stamping industry and to evaluate the utilization of the production line by using ARENA simulation software. The process time and the standard time for each process of the production line is obtained from data given by the company management. Other data are collected through direct observation of the line. There are three work stations performing ten different types of processes in order to produce a single product type. Arena simulation model is then developed based on the collected data. Verification and validation are done to the Arena model, and finally the result of Arena simulation can be analyzed. It is found that utilization at each workstation will increase if batch size is increased although throughput rate remains/is kept constant. This study is very useful for the company because the company needs to improve the efficiency and utilization of its production lines.
Keywords: Arena software, case study, production line, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538710918 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider
Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón
Abstract:
The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.Keywords: AD0, ALICE, DCS, LHC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140610917 Applications of Genetic Programming in Data Mining
Authors: Saleh Mesbah Elkaffas, Ahmed A. Toony
Abstract:
This paper details the application of a genetic programming framework for induction of useful classification rules from a database of income statements, balance sheets, and cash flow statements for North American public companies. Potentially interesting classification rules are discovered. Anomalies in the discovery process merit further investigation of the application of genetic programming to the dataset for the problem domain.Keywords: Genetic programming, data mining classification rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155210916 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.
Keywords: AIDS mortality rates, Epidemiological model, Time-homogeneous Markov Jump Process, Transition Probability, Statistics South Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217910915 An Investigation of Quality Practices in Libyan Industrial Companies
Authors: Mostafa A. Shokshok, Omran Ali Abu Krais
Abstract:
This paper describes the collection and analysis of data obtained from face-to-face interviews conducted in selected Libyan industrial companies. The objectives of the interviews are to enhance understanding, and generate explanations of current issues in culture and quality management systems in Libyan companies. The method used in analyzing the questions, as well as the main finding of each question are explained. The interviews probed areas identify national and organizational culture, quality management systems, current methods, effects, barriers and other factors affecting the success of quality management implementation. Eleven questions are prepared and been discussed with the interviewees.Keywords: Interviews, quality, culture, Libyan industrial companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195710914 Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)
Authors: Yi-Pin Hsu, Shin-Yu Lin
Abstract:
An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.
Keywords: Parallel-computing, FFT, low-memory reference, TIDSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220510913 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: Natural language processing, end user development; natural language interfaces, human computer interaction, data recognition, dialog systems, spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113010912 Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis
Authors: Natália B. Pompermayer, Mariana B. Porto, Elizabeth F. Souza
Abstract:
Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.
Keywords: Environmental impact analysis, inorganic nanoparticles, photocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346610911 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)
Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi
Abstract:
Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191710910 A Comparative Study of Web-pages Classification Methods using Fuzzy Operators Applied to Arabic Web-pages
Authors: Ahmad T. Al-Taani, Noor Aldeen K. Al-Awad
Abstract:
In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web-pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.
Keywords: Text classification, HTML, web pages, machine learning, fuzzy logic, Arabic web pages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224110909 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique
Authors: Jaturong Som-ard
Abstract:
The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.Keywords: Flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94710908 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172310907 Comparison of S-transform and Wavelet Transform in Power Quality Analysis
Authors: Mohammad Javad Dehghani
Abstract:
In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.Keywords: Power quality, S-Transform, Short Time FourierTransform , Wavelet Transform, instantaneous sag, swell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823