Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis
Authors: Natália B. Pompermayer, Mariana B. Porto, Elizabeth F. Souza
Abstract:
Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.
Keywords: Environmental impact analysis, inorganic nanoparticles, photocatalysts.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333034
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3457References:
[1] P. Krüger, “Nanotechnology for a sustainable economy,” in Proc.
EuroNanoForum, Prague, 2009, pp. 3–9.
[2] T. Masciangioli, W.-X. Zhang, “Environmental technologies at the
nanoscale,” Environ. Sci. Technol., vol. 37, no. 5, pp. 102A–108A, Mar.
2003.
[3] A. S. Stasinakis, “Use of selected advanced oxidation processes (AOPs)
for wastewater treatment – A Mini Review,” Global NEST J., vol. 10,
no. 1, pp. 376–385, 2008.
[4] J. T. Alexander, J. T.; F. I. Hai, T. M. Al-aboud, “Chemical
coagulation-based processes for trace organic contaminant removal:
current state and future potential,” J. Environ. Manage., vol. 111, no. 1,
pp. 195–207, Nov. 2012.
[5] D. W. Elliot, W.-X. Zhang, “Field assessment of nanoscale bimetallic
particles for groundwater remediation,” Environ. Sci. Technol., vol. 35,
no. 24, pp. 4922–4926, Nov. 2001.
[6] EPA 100/B-07/001, “Nanotechnology white paper,” 2007.
[7] S. M. Ponder, J. G. Darab, T. E. Mallouk, “Remediation of Cr(VI) and
Pb(II) aqueous solutions using supported, nanoscale zero valent iron,”
Environ. Sci. Technol., vol. 34, no. 12, pp. 2564–2569, Mai. 2000.
[8] R. F. S. Salazar, H. J. Izáio-Filho, “Aplicação de processo oxidativo
avançado baseado em fotocatálise heterogênea (TiO2/UVsolar) para o
pré-tratamento de afluente lácteo,” Augm_Domus, vol. 1, no. 1, pp. 27–
44, 2009.
[9] T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. W. Bahnemann,
“Tailored titanium dioxide nanomaterials: anatase nanoparticles and
brookite nanorods as highly active photocatalysts,” Chem. Mater., vol.
22, no. 6, pp. 2050–2060, Feb. 2010.
[10] K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, “Photocatalytic
degradation of organic compounds over combustion-synthesized nano-
TiO2,” Environ. Sci. Technol., vol. 38, no. 5, pp. 1600–1604, Jan. 2004.
[11] S. I. Shah, W. Li, C. P. Huang. O. Jung, C. Ni, “Study of Nd3+, Pd2+,
Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles,”
Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 2, pp. 6482–6486, Mar.
2002.
[12] N. Singh, S. Mittala, K. Sood, P. Gupta, “Controlling the flow of
nascent oxygen using hydrogen peroxide results in controlling the
synthesis of ZnO/ZnO2,” Chalcogenide Lett., vol. 7, no. 4, pp. 275–281,
Apr. 2010.
[13] R. F. Mulligan, A. A. Iliadis, P. Kofinas, “Synthesis and
characterization of ZnO nanostructures. templated using diblock
copolymers,” J. Appl. Polymer Sci., vol. 89, no. 4, pp. 1058–1061, May
2003.
[14] T. J. Shinde, A. B. Gadkari, P. N. Vasambekar, “DC resistivity of Ni–
Zn ferrites prepared by oxalate precipitation method,” Mater. Chem.
Phys., vol. 111, no. 1, pp. 87–91, Sep. 2008.
[15] X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu,
“Visible light induced photocatalytic degradation of Rhodamine B on
one-dimensional iron oxide particles,” J. Phys. Chem. C, vol. 114, no.
40, pp. 17051–17061, Sep. 2010.
[16] Z. Jiao, J. Wang, L. Ke, X. W. Sun, H. V. Demir, “Morphology-tailored
synthesis of tungsten trioxide (hydrate) thin films and their
photocatalytic properties,” ACS Appl. Mater. Interfaces, vol. 3, no. 2,
pp. 229–236, Nov. 2011.
[17] D. Solís-Casados, E. Vigueras-Santiago, S. Hernández-López, M. A.
Camacho-López, “Characterization and photocatalytic performance of
tin oxide,” Ind. Eng. Chem. Res., vol. 48, no. 3, pp. 1249–1252, Jan.
2009.
[18] N. Wang, J. Xu, L. Guan, “Synthesis and enhanced photocatalytic
activity of tin oxide nanoparticles coated on multi-walled carbon
nanotube,” Mater. Res. Bull., vol. 46, no. 9, pp. 1372–1376, Sep. 2011.
[19] P. J. Alvarez, “Nanotechnology in the environment - the good, the bad,
and the ugly,” J. Environ. Eng., vol. 132, no. 10, pp. 1233–1233, Oct.
2006.
[20] N. Lubick, “Risks of nanotechnology remain uncertain,” Environ. Sci.
Technol., vol. 42, no. 6, pp. 1821-1824, Mar. 2008.
[21] P. J. J. Alvarez, V. Colvin, J. Lead, V. Stone, “Research priorities to
advance eco-responsible nanotechnology,” ACS Nano, vol. 3, no. 7, pp.
1616–1616, Jul. 2009.
[22] M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella Jr., R. T. Di
Giulio, E. Casman, E. S. Bernhardt, “Decreasing uncertainties in
assessing environmental exposure, risk, and ecological implications of
nanomaterials,” Environ. Sci. Technol., vol. 43, no. 17, pp. 6458–6462,
Jul. 2009.
[23] N. Lubick, “Hunting for engineered nanomaterials in the environment,”
Environ. Sci. Technol., vol. 43, no. 7, pp. 6446–6447, Jul. 2009.
[24] J. A. Dahl, B. L. S. Maddux, J. E. Hutchison, “Toward greener
nanosynthesis”, Chem. Rev., vol. 107, no. 6, pp. 2228–2269, Jun. 2007.
[25] J. E. Hutchison, “Greener nanoscience: a proactive approach to
advancing applications and reducing implications of nanotechnology,”
ACS Nano, vol. 2, no. 3, pp. 395–402, Mar. 2008.
[26] V. Khanna, B. R. Bakshi, “Carbon nanofiber polymer composites:
evaluation of life cycle energy use,” Environ. Sci. Technol., vol. 43, no.
6, pp. 2078–2084, Mar. 2009.
[27] S. Naidu, R. Sawhney, X. Li, “A methodology for evaluation and
selection of nanoparticle manufacturing processes based on
sustainability metrics,” Environ. Sci. Technol., vol. 42, no. 17, pp.
6697–6702, Jul. 2008.
[28] L. C. Mckenzie, J. E. Hutchison, “Green nanoscience: an integrated
approach to greener products, processes and applications,” Chim. Oggi,
vol. 22, no. 9, pp. 30–33, Sep. 2004.
[29] C. Bauer, J. Buchgeister, R. Hischier, W. R. Poganietz, L. Schebek, J.
Warsen, “Towards a framework for life cycle thinking in the assessment
of nanotechnology,” J. Cleaner Prod., vol. 16, no. 8–9, pp. 910–926,
May–Jun. 2008.
[30] N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, and M. H.
Rasoulifard, “Preparation and investigation of photocatalytic properties
of ZnO nanocrystals: effect of operational parameters and kinetic
study,” Inter. J. Chem. Biol. Eng., vol. 1, no. 1, pp. 23 – 28, Winter
2008.
[31] Q. Zhang, K. Park, G. Cao, “Synthesis of ZnO aggregates and their
application in dye-sensitized solar cells,” Mater. Matters, vol. 5, no. 2,
pp. 32–38, 2010.
[32] D. Sebık, K. Szendrei, T. Szabó, I. Dékány, “Optical properties of zinc
oxide ultrathin hybrid films on silicon wafer prepared by layer-by-layer
method,” Thin Sol. Films, vol. 516, no. 10, pp. 3009–3014, Mar. 2008.
[33] H. Rashidia, A. Ahmadpour, F. F. Bamoharram, M. M. Heravi, A.
Ayati, “The novel, one step and facile synthesis of ZnO nanoparticles
using heteropolyoxometalates and their photoluminescence behavior,”
Adv. Powder Technol., DOI
http://dx.doi.org/10.1016/j.apt.2012.10.008, Nov. 2012.
[34] M. Winkelmann, E.-M. Grimm, T. Comunian, B. Freudig, Y. Zhou, W.
Gerlinger, B. Sachweh, H. P. Schuchmann, “Controlled droplet
coalescence in miniemulsions to synthesize zinc oxide nanoparticles by
precipitation,” Chem. Eng. Sci., vol. 92, no. 1, pp. 126–133, Apr. 2013.
[35] M. Shamsipur, S. M. Pourmortazavi, S. S. Hajimirsadeghi, M. M.
Zahedi, M. Rahimi-Nasrabadi, “Facile synthesis of zinc carbonate and
zinc oxide nanoparticles via direct carbonation and thermal
decomposition,” Ceram. Int., vol. 39, no. 1, pp. 819–827, Jan. 2013.
[36] N. Jensen, N. Coll, R. Gani, “An integrated computer-aided system for
generation and evaluation of sustainable process alternatives,” Clean
Technol. Environ. Policy, vol. 5, no. 3–4, pp. 209–225, Oct. 2003.
[37] A.-M. Heikkilä, “Inherent safety in process plant design - an indexbased
approach,” Ph.D-Thesis, VTT Automation, Espoo, Finland, 1999.
[38] C. C. Bueno, “Avaliação de Risco de Nanotecnologias Emprego do
Método GMP-RAM,” Monograph (Environmental Engineering) –
Pontifícia Universidade Católica de Campinas, 2009. 98p.
[39] D. W. Ball, Físico-Química. São Paulo, SP: Pioneira Thomson, 2002.
[40] N. Daneshvar, A. Aleboyeh, A. R. Khataee, The evaluation of electrical
energy per order (EEo) for photooxidative decolorization of four textile
dye solutions by the kinetic model,” Chemosphere, vol. 59, no. 6,
pp.761–767, Dec. 2005.
[41] R. Viswanatha, T. G. Venkatesh, C. C. Vidyasagar, Y. A Nayaka,
“Preparation and characterization of ZnO and Mg-ZnO nanoparticles,”
Arch. Appl. Sci. Res., vol. 4, no. 1, pp. 480–486, 2012.
[42] D. W. Ball, Físico-Química, vol. 2. São Paulo: Pioneira Thomson
Learning, 2006, pp. 732–742.