Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis

Authors: Natália B. Pompermayer, Mariana B. Porto, Elizabeth F. Souza

Abstract:

Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.

Keywords: Environmental impact analysis, inorganic nanoparticles, photocatalysts.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333034

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468

References:


[1] P. Krüger, “Nanotechnology for a sustainable economy,” in Proc. EuroNanoForum, Prague, 2009, pp. 3–9.
[2] T. Masciangioli, W.-X. Zhang, “Environmental technologies at the nanoscale,” Environ. Sci. Technol., vol. 37, no. 5, pp. 102A–108A, Mar. 2003.
[3] A. S. Stasinakis, “Use of selected advanced oxidation processes (AOPs) for wastewater treatment – A Mini Review,” Global NEST J., vol. 10, no. 1, pp. 376–385, 2008.
[4] J. T. Alexander, J. T.; F. I. Hai, T. M. Al-aboud, “Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential,” J. Environ. Manage., vol. 111, no. 1, pp. 195–207, Nov. 2012.
[5] D. W. Elliot, W.-X. Zhang, “Field assessment of nanoscale bimetallic particles for groundwater remediation,” Environ. Sci. Technol., vol. 35, no. 24, pp. 4922–4926, Nov. 2001.
[6] EPA 100/B-07/001, “Nanotechnology white paper,” 2007. . Access in: 09 Aug. 2011.
[7] S. M. Ponder, J. G. Darab, T. E. Mallouk, “Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero valent iron,” Environ. Sci. Technol., vol. 34, no. 12, pp. 2564–2569, Mai. 2000.
[8] R. F. S. Salazar, H. J. Izáio-Filho, “Aplicação de processo oxidativo avançado baseado em fotocatálise heterogênea (TiO2/UVsolar) para o pré-tratamento de afluente lácteo,” Augm_Domus, vol. 1, no. 1, pp. 27– 44, 2009.
[9] T. A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D. W. Bahnemann, “Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts,” Chem. Mater., vol. 22, no. 6, pp. 2050–2060, Feb. 2010.
[10] K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Madras, “Photocatalytic degradation of organic compounds over combustion-synthesized nano- TiO2,” Environ. Sci. Technol., vol. 38, no. 5, pp. 1600–1604, Jan. 2004.
[11] S. I. Shah, W. Li, C. P. Huang. O. Jung, C. Ni, “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 2, pp. 6482–6486, Mar. 2002.
[12] N. Singh, S. Mittala, K. Sood, P. Gupta, “Controlling the flow of nascent oxygen using hydrogen peroxide results in controlling the synthesis of ZnO/ZnO2,” Chalcogenide Lett., vol. 7, no. 4, pp. 275–281, Apr. 2010.
[13] R. F. Mulligan, A. A. Iliadis, P. Kofinas, “Synthesis and characterization of ZnO nanostructures. templated using diblock copolymers,” J. Appl. Polymer Sci., vol. 89, no. 4, pp. 1058–1061, May 2003.
[14] T. J. Shinde, A. B. Gadkari, P. N. Vasambekar, “DC resistivity of Ni– Zn ferrites prepared by oxalate precipitation method,” Mater. Chem. Phys., vol. 111, no. 1, pp. 87–91, Sep. 2008.
[15] X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, Y. Yang, G. Liu, “Visible light induced photocatalytic degradation of Rhodamine B on one-dimensional iron oxide particles,” J. Phys. Chem. C, vol. 114, no. 40, pp. 17051–17061, Sep. 2010.
[16] Z. Jiao, J. Wang, L. Ke, X. W. Sun, H. V. Demir, “Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties,” ACS Appl. Mater. Interfaces, vol. 3, no. 2, pp. 229–236, Nov. 2011.
[17] D. Solís-Casados, E. Vigueras-Santiago, S. Hernández-López, M. A. Camacho-López, “Characterization and photocatalytic performance of tin oxide,” Ind. Eng. Chem. Res., vol. 48, no. 3, pp. 1249–1252, Jan. 2009.
[18] N. Wang, J. Xu, L. Guan, “Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube,” Mater. Res. Bull., vol. 46, no. 9, pp. 1372–1376, Sep. 2011.
[19] P. J. Alvarez, “Nanotechnology in the environment - the good, the bad, and the ugly,” J. Environ. Eng., vol. 132, no. 10, pp. 1233–1233, Oct. 2006.
[20] N. Lubick, “Risks of nanotechnology remain uncertain,” Environ. Sci. Technol., vol. 42, no. 6, pp. 1821-1824, Mar. 2008.
[21] P. J. J. Alvarez, V. Colvin, J. Lead, V. Stone, “Research priorities to advance eco-responsible nanotechnology,” ACS Nano, vol. 3, no. 7, pp. 1616–1616, Jul. 2009.
[22] M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella Jr., R. T. Di Giulio, E. Casman, E. S. Bernhardt, “Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials,” Environ. Sci. Technol., vol. 43, no. 17, pp. 6458–6462, Jul. 2009.
[23] N. Lubick, “Hunting for engineered nanomaterials in the environment,” Environ. Sci. Technol., vol. 43, no. 7, pp. 6446–6447, Jul. 2009.
[24] J. A. Dahl, B. L. S. Maddux, J. E. Hutchison, “Toward greener nanosynthesis”, Chem. Rev., vol. 107, no. 6, pp. 2228–2269, Jun. 2007.
[25] J. E. Hutchison, “Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology,” ACS Nano, vol. 2, no. 3, pp. 395–402, Mar. 2008.
[26] V. Khanna, B. R. Bakshi, “Carbon nanofiber polymer composites: evaluation of life cycle energy use,” Environ. Sci. Technol., vol. 43, no. 6, pp. 2078–2084, Mar. 2009.
[27] S. Naidu, R. Sawhney, X. Li, “A methodology for evaluation and selection of nanoparticle manufacturing processes based on sustainability metrics,” Environ. Sci. Technol., vol. 42, no. 17, pp. 6697–6702, Jul. 2008.
[28] L. C. Mckenzie, J. E. Hutchison, “Green nanoscience: an integrated approach to greener products, processes and applications,” Chim. Oggi, vol. 22, no. 9, pp. 30–33, Sep. 2004.
[29] C. Bauer, J. Buchgeister, R. Hischier, W. R. Poganietz, L. Schebek, J. Warsen, “Towards a framework for life cycle thinking in the assessment of nanotechnology,” J. Cleaner Prod., vol. 16, no. 8–9, pp. 910–926, May–Jun. 2008.
[30] N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, and M. H. Rasoulifard, “Preparation and investigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study,” Inter. J. Chem. Biol. Eng., vol. 1, no. 1, pp. 23 – 28, Winter 2008.
[31] Q. Zhang, K. Park, G. Cao, “Synthesis of ZnO aggregates and their application in dye-sensitized solar cells,” Mater. Matters, vol. 5, no. 2, pp. 32–38, 2010.
[32] D. Sebık, K. Szendrei, T. Szabó, I. Dékány, “Optical properties of zinc oxide ultrathin hybrid films on silicon wafer prepared by layer-by-layer method,” Thin Sol. Films, vol. 516, no. 10, pp. 3009–3014, Mar. 2008.
[33] H. Rashidia, A. Ahmadpour, F. F. Bamoharram, M. M. Heravi, A. Ayati, “The novel, one step and facile synthesis of ZnO nanoparticles using heteropolyoxometalates and their photoluminescence behavior,” Adv. Powder Technol., DOI http://dx.doi.org/10.1016/j.apt.2012.10.008, Nov. 2012.
[34] M. Winkelmann, E.-M. Grimm, T. Comunian, B. Freudig, Y. Zhou, W. Gerlinger, B. Sachweh, H. P. Schuchmann, “Controlled droplet coalescence in miniemulsions to synthesize zinc oxide nanoparticles by precipitation,” Chem. Eng. Sci., vol. 92, no. 1, pp. 126–133, Apr. 2013.
[35] M. Shamsipur, S. M. Pourmortazavi, S. S. Hajimirsadeghi, M. M. Zahedi, M. Rahimi-Nasrabadi, “Facile synthesis of zinc carbonate and zinc oxide nanoparticles via direct carbonation and thermal decomposition,” Ceram. Int., vol. 39, no. 1, pp. 819–827, Jan. 2013.
[36] N. Jensen, N. Coll, R. Gani, “An integrated computer-aided system for generation and evaluation of sustainable process alternatives,” Clean Technol. Environ. Policy, vol. 5, no. 3–4, pp. 209–225, Oct. 2003.
[37] A.-M. Heikkilä, “Inherent safety in process plant design - an indexbased approach,” Ph.D-Thesis, VTT Automation, Espoo, Finland, 1999.
[38] C. C. Bueno, “Avaliação de Risco de Nanotecnologias Emprego do Método GMP-RAM,” Monograph (Environmental Engineering) – Pontifícia Universidade Católica de Campinas, 2009. 98p.
[39] D. W. Ball, Físico-Química. São Paulo, SP: Pioneira Thomson, 2002.
[40] N. Daneshvar, A. Aleboyeh, A. R. Khataee, The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model,” Chemosphere, vol. 59, no. 6, pp.761–767, Dec. 2005.
[41] R. Viswanatha, T. G. Venkatesh, C. C. Vidyasagar, Y. A Nayaka, “Preparation and characterization of ZnO and Mg-ZnO nanoparticles,” Arch. Appl. Sci. Res., vol. 4, no. 1, pp. 480–486, 2012.
[42] D. W. Ball, Físico-Química, vol. 2. São Paulo: Pioneira Thomson Learning, 2006, pp. 732–742.