Search results for: pattern matching
984 M2LGP: Mining Multiple Level Gradual Patterns
Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.Keywords: Gradual Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500983 Automata Theory Approach for Solving Frequent Pattern Discovery Problems
Authors: Renáta Iváncsy, István Vajk
Abstract:
The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628982 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.
Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483981 Interactive Chinese Character Learning System though Pictograph Evolution
Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang
Abstract:
This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908980 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216979 Minimal Critical Sets of Inertias for Irreducible Zero-nonzero Patterns of Order 3
Authors: Ber-Lin Yu, Ting-Zhu Huang
Abstract:
If there exists a nonempty, proper subset S of the set of all (n + 1)(n + 2)/2 inertias such that S Ôèå i(A) is sufficient for any n × n zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [3], Kim, Olesky and Driessche identified all minimal critical sets of inertias for 2 × 2 zero-nonzero patterns. Identifying all minimal critical sets of inertias for n × n zero-nonzero patterns with n ≥ 3 is posed as an open question in [3]. In this paper, all minimal critical sets of inertias for 3 × 3 zero-nonzero patterns are identified. It is shown that the sets {(0, 0, 3), (3, 0, 0)}, {(0, 0, 3), (0, 3, 0)}, {(0, 0, 3), (0, 1, 2)}, {(0, 0, 3), (1, 0, 2)}, {(0, 0, 3), (2, 0, 1)} and {(0, 0, 3), (0, 2, 1)} are the only minimal critical sets of inertias for 3 × 3 irreducible zerononzero patterns.
Keywords: Permutation digraph, zero-nonzero pattern, irreducible pattern, critical set of inertias, inertially arbitrary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237978 Shot Boundary Detection Using Octagon Square Search Pattern
Authors: J. Kavitha, S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
In this paper, a shot boundary detection method is presented using octagon square search pattern. The color, edge, motion and texture features of each frame are extracted and used in shot boundary detection. The motion feature is extracted using octagon square search pattern. Then, the transition detection method is capable of detecting the shot or non-shot boundaries in the video using the feature weight values. Experimental results are evaluated in TRECVID video test set containing various types of shot transition with lighting effects, object and camera movement within the shots. Further, this paper compares the experimental results of the proposed method with existing methods. It shows that the proposed method outperforms the state-of-art methods for shot boundary detection.
Keywords: Content-based indexing and retrieval, cut transition detection, discrete wavelet transform, shot boundary detection, video source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001977 Downtrend Algorithm and Hedging Strategy in Futures Market
Authors: S. Masteika, A.V. Rutkauskas, A. Tamosaitis
Abstract:
The paper investigates downtrend algorithm and trading strategy based on chart pattern recognition and technical analysis in futures market. The proposed chart formation is a pattern with the lowest low in the middle and one higher low on each side. The contribution of this paper lies in the reinforcement of statements about the profitability of momentum trend trading strategies. Practical benefit of the research is a trading algorithm in falling markets and back-test analysis in futures markets. When based on daily data, the algorithm has generated positive results, especially when the market had downtrend period. Downtrend algorithm can be applied as a hedge strategy against possible sudden market crashes. The proposed strategy can be interesting for futures traders, hedge funds or scientific researchers performing technical or algorithmic market analysis based on momentum trend trading.Keywords: trading algorithm, chart pattern, downtrend trading, futures market, hedging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358976 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm
Authors: Mourad Ykhlef, Hebah ElGibreen
Abstract:
Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026975 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944974 A Constrained Clustering Algorithm for the Classification of Industrial Ores
Authors: Luciano Nieddu, Giuseppe Manfredi
Abstract:
In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381973 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318972 A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator
Authors: A. Leelasantitham, B. Srisuchinwong
Abstract:
A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.Keywords: Sinusoidal quadrature oscillator, low-pass-filterbased, current-mirror bilinear transfer function, all-current-mirror, negative resistance, low power, high frequency, low distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070971 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells
Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth
Abstract:
In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.
Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802970 Evaluation of Natural Drainage Flow Pattern, Necessary for Flood Control, Using Digitized Topographic Information: A Case Study of Bayelsa State Nigeria
Authors: Collins C. Chiemeke
Abstract:
The need to evaluate and understand the natural drainage pattern in a flood prone, and fast developing environment is of paramount importance. This information will go a long way to help the town planners to determine the drainage pattern, road networks and areas where prominent structures are to be located. This research work was carried out with the aim of studying the Bayelsa landscape topography using digitized topographic information, and to model the natural drainage flow pattern that will aid the understanding and constructions of workable drainages. To achieve this, digitize information of elevation and coordinate points were extracted from a global imagery map. The extracted information was modeled into 3D surfaces. The result revealed that the average elevation for Bayelsa State is 12 m above sea level. The highest elevation is 28 m, and the lowest elevation 0 m, along the coastline. In Yenagoa the capital city of Bayelsa were a detail survey was carried out showed that average elevation is 15 m, the highest elevation is 25 m and lowest is 3 m above the mean sea level. The regional elevation in Bayelsa, showed a gradation decrease from the North Eastern zone to the South Western Zone. Yenagoa showed an observed elevation lineament, were low depression is flanked by high elevation that runs from the North East to the South west. Hence, future drainages in Yenagoa should be directed from the high elevation, from South East toward the North West and from the North West toward South East, to the point of convergence which is at the center that flows from South East toward the North West. Bayelsa when considered on a regional Scale, the flow pattern is from the North East to the South West, and also North South. It is recommended that in the event of any large drainage construction at municipal scale, it should be directed from North East to the South West or from North to South. Secondly, detail survey should be carried out to ascertain the local topography and the drainage pattern before the design and construction of any drainage system in any part of Bayelsa.
Keywords: Bayelsa, Digitized Topographic Information, Drainage, Flood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263969 Exploring the Impact of Body Shape on Bra Fit: Integrating 3D Body Scanning and Traditional Patternmaking Methods
Authors: Yin-Ching Keung, Kit-Lun Yick
Abstract:
The issue of bra fitting has persisted throughout history despite advancements in molded bra cups. To gain a deeper understanding of the interaction between the breast and bra pattern, this study combines the art of traditional bra patternmaking with 3D body scanning technology. By employing a 2D bra pattern drafting method and analyzing the effect of body shape on the desired bra cup shape, the study focuses on the differentiation of the lower cup among bras designed for flat and round body-shaped breasts. The results shed light on the impact of body shape on bra fit and provide valuable insights for further research and improvements in bra design, pattern drafting, and fit. The integration of 3D body scanning technology enhances the accuracy and precision of measurements, allowing for a more comprehensive analysis of the unique contours and dimensions of the breast and body. Ultimately, the study aims to provide individuals with different body shapes a more comfortable and well-fitted bra-wearing experience, contributing to the ongoing efforts to alleviate the longstanding problem of bra fitting.
Keywords: Breast shapes, bra fitting, 3D body scanning, bra patternmaking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80968 A Software Tool Design for Cerebral Infarction of MR Images
Authors: Kyoung-Jong Park, Woong-Gi Jeon, Hee-Cheol Kim, Dong-Eog Kim, Heung-Kook Choi
Abstract:
The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.
Keywords: Software tool design, Cerebral infarction, Brain MR image, Registration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663967 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056966 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern
Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc
Abstract:
The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.
Keywords: Phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596965 Concurrent Access to Complex Entities
Authors: Cosmin Rablou
Abstract:
In this paper we present a way of controlling the concurrent access to data in a distributed application using the Pessimistic Offline Lock design pattern. In our case, the application processes a complex entity, which contains in a hierarchical structure different other entities (objects). It will be shown how the complex entity and the contained entities must be locked in order to control the concurrent access to data.Keywords: Object-oriented programming, Pessimistic Lock, Design pattern, Concurrent access to data, Processing complex entities
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311964 High Gain Circularly Polarized Wire Antenna for DSRC Applications
Authors: Mohammad J. Almalkawi
Abstract:
In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.Keywords: Circularly polarized, dedicated short-range communication, omnidirectional pattern, vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), Y-shaped wire monopole antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849963 Parameters Estimation of Double Diode Solar Cell Model
Authors: M. R. AlRashidi, K. M. El-Naggar, M. F. AlHajri
Abstract:
A new technique based on Pattern search optimization is proposed for estimating different solar cell parameters in this paper. The estimated parameters are the generated photocurrent, saturation current, series resistance, shunt resistance, and ideality factor. The proposed approach is tested and validated using double diode model to show its potential. Performance of the developed approach is quite interesting which signifies its potential as a promising estimation tool.
Keywords: Solar Cell, Parameter Estimation, Pattern Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5989962 Energy Conscious Builder Design Pattern with C# and Intermediate Language
Authors: Kayun Chantarasathaporn, Chonawat Srisa-an
Abstract:
Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999961 Hierarchical Clustering Analysis with SOM Networks
Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy
Abstract:
This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947960 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.
Keywords: Chain code frequency, character recognition, feature extraction, features matching, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753959 Negative Selection as a Means of Discovering Unknown Temporal Patterns
Authors: Wanli Ma, Dat Tran, Dharmendra Sharma
Abstract:
The temporal nature of negative selection is an under exploited area. In a negative selection system, newly generated antibodies go through a maturing phase, and the survivors of the phase then wait to be activated by the incoming antigens after certain number of matches. These without having enough matches will age and die, while these with enough matches (i.e., being activated) will become active detectors. A currently active detector may also age and die if it cannot find any match in a pre-defined (lengthy) period of time. Therefore, what matters in a negative selection system is the dynamics of the involved parties in the current time window, not the whole time duration, which may be up to eternity. This property has the potential to define the uniqueness of negative selection in comparison with the other approaches. On the other hand, a negative selection system is only trained with “normal" data samples. It has to learn and discover unknown “abnormal" data patterns on the fly by itself. Consequently, it is more appreciate to utilize negation selection as a system for pattern discovery and recognition rather than just pattern recognition. In this paper, we study the potential of using negative selection in discovering unknown temporal patterns.
Keywords: Artificial Immune Systems, ComputationalIntelligence, Negative Selection, Pattern Discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665958 A Case Study of Clinicians’ Perceptions of Enterprise Content Management at Tygerberg Hospital
Authors: Temitope O. Tokosi
Abstract:
Healthcare is a human right. The sensitivity of health issues has necessitated the introduction of Enterprise Content Management (ECM) at district hospitals in the Western Cape Province of South Africa. The objective is understanding clinicians’ perception of ECM at their workplace. It is a descriptive case study design of constructivist paradigm. It employed a phenomenological data analysis method using a pattern matching deductive based analytical procedure. Purposive and s4nowball sampling techniques were applied in selecting participants. Clinicians expressed concerns and frustrations using ECM such as, non-integration with other hospital systems. Inadequate access points to ECM. Incorrect labelling of notes and bar-coding causes more time wasted in finding information. System features and/or functions (such as search and edit) are not possible. Hospital management and clinicians are not constantly interacting and discussing. Information turnaround time is unacceptably lengthy. Resolving these problems would involve a positive working relationship between hospital management and clinicians. In addition, prioritising the problems faced by clinicians in relation to relevance can ensure problem-solving in order to meet clinicians’ expectations and hospitals’ objective. Clinicians’ perception should invoke attention from hospital management with regards technology use. The study’s results can be generalised across clinician groupings exposed to ECM at various district hospitals because of professional and hospital homogeneity.Keywords: Clinician, electronic content management, hospital, perception, technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051957 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.
Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434956 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.
Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151955 Historical and Future Rainfall Variations in Bangladesh
Authors: M. M. Hossain, M. Z. Hasan, M. Alauddin, S. Akhter
Abstract:
Climate change has become a major concern across the world as the intensity along with quantity of the rainfall, mean surface temperature and other climatic parameters have been changed not only in Bangladesh but also in the entire globe. Bangladesh has already experienced many natural hazards. Among them changing of rainfall pattern, erratic and heavy rainfalls are very common. But changes of rainfall pattern and its amount is still in question to some extent. This study aimed to unfold how the historical rainfalls varied over time and how would be their future trends. In this context, historical rainfall data (1975-2014) were collected from Bangladesh Metrological Department (BMD) and then a time series model was developed using Box-Jenkins algorithm in IBM SPSS to forecast the future rainfall. From the historical data analysis, this study revealed that the amount of rainfall decreased over the time and shifted to the post monsoons. Forecasted rainfall shows that the pre-monsoon and early monsoon will get drier in future whereas late monsoon and post monsoon will show huge fluctuations in rainfall magnitudes with temporal variations which means Bangladesh will get comparatively drier seasons in future which may be a serious problem for the country as it depends on agriculture.
Keywords: Monsoon, Pre-monsoon, rainfall, pattern, variations, IBM-SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335