Open Science Index, Computer and Information Engineering Vol:6, No:5, 2012 publications.waset.org/9744.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

Concurrent Access to Complex Entities

Cosmin Rablou

Abstract—In this papesve present a way of controlling the However, the disadvantage of the Optimistic Lockhat

concurrent access to data in a distributed appicatising the
Pessimistic Offline Lock design pattern. In oureathe application
processes a complex entity, which contains in eahilical structure
different other entities (objects). It will be showow the complex
entity and the contained entities must be lockedrafer to control
the concurrent access to data.

Keywords—Object-oriented programmingPessimistic Lock,
Design pattern, Concurrent access to data, Progessbmplex
entities

|. INTRODUCTION

VERY distributed business application must deahtfite

issue of data being accessed and updated by diffesers
at the same time. If there is no control of the ccwrency
implemented, this can lead to data inconsistenfigs.

In order to avoid this, a business application nnagiement
a sort of concurrency control. If one user wantspaate a
record from the database, then it must be prevehggdother
users change the same record at the same timesitimagion
is known under the name of synchronizing (or logkithe
access of users to the same data.

Il. LOCKING STRATEGIES

There are two different strategies of implementing a
concurrency control to the database:

the changes that the user has done to the entiy Ineurolled
back, if another user changes the data in betwHeis. leads
often to frustration, as in this case the changesl@st. The
user must start processing the entity from theriyegg.

From my experience, when it comes to business dia¢a,
better (and the user-friendlier) choice is the IPeistic Lock.

I1l. COMPLEX ENTITY

A business complex entity is an object that costalata
from more than one table. The complex entity has
hierarchical structure, as it contains differentjects or
structures or a collection of objects of the saypet Usually,
the entity and the included objects are in a coiitipos
relation, which means the included objects are mediaolely
through the complex entity. When the object tharesents
the complex entity is destroyed, the contained abjere
destroyed, as well. [4]

The business partner in a FICA SAP module is amela
of an entity that contains both simple entities aallections of
entities. The address, the control data and thesstae simple
entities. There is a one-to-one relation betweenbthsiness
partner and a simple entity.

BP Number

10000012 ¥ & Franz Landmann [69115 Heidelberg

e Optimistic Lock [2] — can be implemented when thert

is a low chance that different users will accesd ar_.« s | acdres: Overvisw
then change the same entity at the same tim
However, when a simultaneous access occurs, the |;
user that updates the data must choose an acti

(rollback or overwrite/merge the data).
» Pessimistic Lock [3] — the first user that accedbes
entity locks it, so that the other users can't gfeait.

When the user updates the data, the lock is releas

so that the other users can access it.

The disadvantage of the Pessimistic Lock is the theat a
user cannot change an entity if another user maady locked
the same entity. But this is something that a user easily
understand and accept.

Cosmin Rablou has graduated the Faculty of Cybiesebtatistics and
Economic Informatics, Bucharest in 2001. He joitleel same year the team
at Derdack GmbH, Germany, where his main focus wes the
telecommunications and mobile solutions developmént2007 he joined
OctaVIA AG, where he mainly develops SAP applicasio for
telecommunications.

Cosmin Rablou is currently writing his Ph.D. disagon on design
patterns.

International Scholarly and Scientific Research & Innovation 6(5) 2012

549

Display in BP role Business Partner (Gen.) - |@|
Walidity Period 01.01.0001 - 31.12,9999 hd a (i]
Identification Control Payment Transactions Status
Marne
Title: T ~!
L .|
First name Franz
Last name Landmann
Correspondence lang. DE German
Language DE| German
Search Terms
Search Term 1/2 LAMDMANM
Standard Address
| = ”Q Print Preview
Street Address
StreetfHouse number Rohrbacher Str. 20
Postal Code/City 69115 Heidelberg
Country DE Germary Region
Time zone CET

PO Box Address
PO Box
Postal Code

Fig. 1 SAP business partner containing differenécis

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:5, 2012 publications.waset.org/9744.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

The bank details and the payment cards

The relationship between the complex entity andcthrgained
entity is in this case one-to-many.

BP Murnber
Display in BP role
Validity Period

10000012 o & Franz Landrann J 69115 Heidelberg

=)
~ & m

Business Partner (Gen.)
01.01.0001 - 31.12.9999

Address Address Overview Identification Control /Payment Transactions | Status

Business Partner (Gen.) 10000012 Franz Landmann § Rohrbacher Str. 20 f 69115 Heidelberg

Bank Details

ID Cry

0l DE
|r =5

Bark kKey
60050101

Bank Account Control Key IBAN IBAN
azazaz4az4az | =]

4

«

|::,l.| Bank Data... ” Change Histary | | walidity || Change | Entry 1 0f 1

Payment Cards

Card number

6005471000033253
£005471000034157
6005471000000072

jinj Type Description
000004 GKOL
000013 GEO1
oool SEOL

Stanclard Desc

4

Fig. 2 SAP business partner containing collectimingbjects

It is important to understand the relation betweetities
and the database tables.

A simple entity contains at least a record fromalald in the
database. It is possible that the entity contails® @ther
records, which are bound to the main record bymbans of a
foreign key.

A collection of entities is an array of entitiedaherefore is

representHowever, when processing a complex entity, thisbjenm
collections of entities that are included in thesibess partner.

reaches a new level of difficulty.

This is due to the fact that there are differemiety of
entities (objects) that are contained in the maintitye
Different users can request access to the santg.értte users
can even request access to entities on differgatdeby using
different applications.

So the problem is to prevent the change of a congigity
when another user is changing at least one of nbkided
entities. Furthermore, when a user changes the lexreptity,
no other user is allowed to change the includeitiest

It must be considered also the fact that the rdguis
change the complex entity and the included entityhtncome
from different applications.

V.SOLUTION

The data inconsistencies occur when several users a
processing the same data at the same time. In todavoid
such situations, the first user that accesses dkee must also
lock it.

In this case, the first user is the only one who peocess
the entity and later save the changes in the dséalhile the
first user locks the entity, no other user is aovto process it.
Another user can only process the entity whenitsedser has
finished updating it.

However, as the complex entity contains a hieraedldata
structure, it is not enough to lock only a recaithen a user is
accessing a complex entity, it is necessary to hmtk the data
directly included in the complex entity and theadbelonging
to the simple entities contained in the complexygnt

This means that it is necessary to implement LocHd a

represented by a record set. Each record can hther o Unlock methods in all entities. Therefore, it iefus to define

referencing records, which are connected to then medord
through a foreign key.

A complex entity groups simple entities and/or ediion of
entities and therefore represents a complex steidtu the
database.

IV. PROBLEM

If more than one user tries to process the sanity etthe
same time, this can lead to data inconsistency.
Imagine the following scenario:

* An user reads the information about a businessyenti

from the database (as a record from a table)

an entity interface that includes the methods Lara#t Unlock.
Even better, the interface can also include theeSagthod.
The Save method updates the data in the databate an
eventually initiates the process of unlocking thétg.

It is important that all applications that procéss data use
the same type of locking mechanism for the samiyefmo
matter if complex or simple). If not so, the loakimechanism
would only guarantee a proper processing within the
application boundaries. Cross-application processh the
same entity would still lead to data inconsistency.

This means the developers of a new application alugtys

consider the locking strategy and mechanism already

« Asecond user requests the access to the same entitMmplemented by existing applications.
* The first user changes something in the entity and

updates the record in the database accordingly

VI. STRUCTURE

+ The second user makes another change and updatddie structure of the presented solution is depittete next

the record later than first user.

The changes made by the first user are now losheadata
saved by the second user did not contain the clsamgele by
the first user.

This situation is known under the name “lost uptaed
this is only one example of data inconsistency thight occur
when different users process data simultaneously.

International Scholarly and Scientific Research & Innovation 6(5) 2012

550

class diagram.
The following components are included in the class
diagram:
* The model — as defined in the MVC-pattern [5], the
model contains the business data and rules. When
processing a complex entity, the model can be

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:5, 2012 publications.waset.org/9744.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

reduced to a Singleton [6], as the business dada anWhen a complex entity is instantiated, it is imnadeliy
rules are mainly grouped in the complex entity.

» The interface for the entities — defines methodd ththe simple entities, which then will also be locked
have to be implemented by the entities, like Lock

Unlock and Save. These methods are implement: |:ManCantroler Model : ComplexEntit : SimpleEntit
both in the complex entity and in the simple eesiti
The methods for setting and getting the attribaties
the entities cannot be included in this interfaas,
their signature differs from entity to entity.

» The complex entity — contains not only the busines
data belonging to the complex entity, but also th
simple entities and collections of simple entities.

e The simple entity — groups the business data th

belong to the simple entity.

Model

-m_ComplexEntity

+5etEntiby)
+EetEntity)
+5aveEntity(l

ComiplexEntity

-m_Attributel
-mn_Attributez
-m_Attributes
-mn_SimpleEntities

+5Setattributes?)
+izetAttributes()
~+GetEntities()

1,.*

SimpleEntity

-m_Attribute

+SetAttributes()
+Getattributes()

<<interface=>»
IEntity

+Lock{)
+lnlock(y
+5ave()

Fig. 3 Class diagram for locking a complex entity

: MainController

: Model

: ComplexErtity

: SimpleEntity

1 CreateComplexEntit; ()E

B

5 i|Lock)

CreateSimpIeEntities():

Fig. 4 Sequence diagram for locking the complextyent

International Scholarly and Scientific Research & Innovation 6(5) 2012

locked. The complex instance triggers then theamition of

SaveCom|3I|3><Entity(]I

.

Fig. 5 Sequence diagram for saving and unlockiegctimplex entity

When the user saves the entity, the data is writbethe
database and the complex entity is unlocked. Furtbe, the
complex entity initiates the saving of the simptgitees. The
Save method in the simple entities unlocks these, t

VIlI. CONSEQUENCES

The main advantage of using the Pessimistic Locknwh
processing a complex entity is that it ensures asser
application concurrency control and thus eliminates data
inconsistencies.

The main downside of the solution is the fact thatdata is
locked for an undefined time interval.

When a complex entity is processed, the lockingcasf not
only the complex entity, but also the included i Thus,
no other user can change the locked entities, vent by using
another application. This is not a disadvantageloag as
another user actually processes the entity.

However, it is possible that the connection betwdes
server and the user that processes the entitygtisThe entity
would remain locked and there would be no way tockit.

The solution to this problem is to use the destmuof the
entity to unlock it. Even if the connection is imgted, at
some point the session of the user on the senlktime out.
When the session times out, the server removebkealbbjects
related to the session from the memory and thedgst of
the entity is called, thus unlocking the object.

In order to increase the availability of the compémtities,
it is possible to define in the application twofeiient ways of
acquiring a complex entity:

« A display mode, where the user can see the
complex entity, but cannot process it. In this mode
the entity is not locked.

551 1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:5, 2012 publications.waset.org/9744.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

« A change mode, where the user locks the complex The data is locked using special forms of the S@le&

entity for processing.

The user loads in the beginning the entity in thepldy
mode. He/she must actively switch to the change emiod
order to process the entity. This reduces theatevhere the
entity is locked to the minimum, therefore incregsithe
availability of the entities.

Another problem that might occur when locking eesitis
the deadlock. Imagine the scenario where our agijic locks
the complex entity and want to acquire a lock onrmfuded
simple entity. In the meantime, an existing appiara locks
first the simple entity and then tries to lock twnplex entity.
This would lead to a deadlock, as both applicativosld wait
for the other entity, which is already locked.

This kind of situation can be avoided if every agion
implements the same order of acquiring the lock.olr
example, it would be necessary that both applinatlock first
the complex entity and then the simple entity. Lilycknough,
this is also the logical way of acquiring the loeksl therefore
such collisions are quite rare.

VIII. IMPLEMENTATION

command in a transaction.

Sadly enough, the SQL standard does not offer a&rgén
form of the Select command for locking records. Idaer,
each database system offers its own command fkinigc

For example, Oracle uses the Select command with th
clause “For Update”. SQLServer uses the Select camdm
with the clause “With (Updlock, Rowlock)” for theame
purpose.

public bool Lock()

{
if (m_nID == 0)
return false;

string strSQL = "SELECT * FROM Invoices WITH
(UPDLOCK, ROWLOCK) WHERE ID = @ID";

m_Connection = new
SglConnection(m_SqlConnectionString);

DataSet IDS = new DataSet();

The following code, that shows how to implement the try

concurrency control for a complex entity is part ah
ASP.NET application written in C#. The applicatiases
SQLServer as a database.

The definition of the entity interface containsleast the
methods for locking, unlocking and saving the gntit

This interface is implemented in the complex enéibd in
the contained entities.
interface 1Entity
{

bool Lock();

void Unlock();

bool Save();

}

The constructor of the complex entity has as ameatar the
key that uniquely identifies the data includedtia bbject (the
primary key). This key can have a null value, whbe
complex entity does not exist yet in the databasei is just
being created by the application.

The constructor loads the data belonging direablythe
complex entity and initializes also the includedités.

public Invoice(int nID)

{

m_nID = nID;

m_InvoicePos = new ArrayList();

LoadInvoicePositions();

}

In this case the application does not lock thetiestifrom
the beginning. This happens only later, when ther us
switching to the change mode.

The complex entity must then lock its own data &meh

{

m_Connection.Open();
m_Transaction =
m_Connection.BeginTransaction(lsolationLevel.Serédle);
SglCommand ICommand = new SglCommand(strSQL
m_Connection, m_Transaction);
ICommand.Parameters.Add("@ID", SqIDbTypi;In
ICommand.Parameters["@ID"].Value = m_nID;
ICommand.CommandTimeout = 1;
m_Adapter = new SqglDataAdapter(ICommand);
m_Adapter.Fill(IDS);
}

catch (Exception err)

{
}

for (inti=0; i <= m_InvoicePos.Count - 1:+}

{

return false;

IEntity liInvoicePos = (IEntity)m_InvoiceHds
if (IInvoicePos.Lock() == false)
return false;

}

return true;

}
The Save method updates the data in the databalseksi

the data belonging to the entity and finally irti¢i& the Save
procedure for the included entities. The Save ntkthibthe
included entity saves and unlocks the respectitigyen

public bool Save()

loop over the included entities in order to iniahe locking {
process for these, too. if (m_nID == 0)
{
International Scholarly and Scientific Research & Innovation 6(5) 2012 552 1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:6, No:5, 2012 publications.waset.org/9744.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:5, 2012

if (Insert() == false)
return false;
}

else

{
if (Modify() == false)
return false;
}

Unlock();
for (inti = 0; i <= m_InvoicePos.Count - 14}
{
IEntity linvoicePos = (IEntity)m_InvoiceHds
if (IInvoicePos.Save() == false)
return false;
}

return true;

}

The destructor of the object must call the methatbtk, to
make sure that the entity is unlocked when the atbje
destroyed. This way, even if the user forgets tupprly close

(1
(2]
(3]
[4]

(5]

(6]

the application, the lock will be released when $besion on

the server times out.

~Invoice()

{
}

Unlock();

The Unlock method of the complex entity unlocksatsn
records and initiates the unlock process of thekmantities.

public void Unlock()

{
if (m_Connection != null)
{
/I Close connection to unlock the record
if (m_Connection != null)
{
m_Connection.Close();
m_Connection = null;
}
m_Adapter = null;
m_Transaction = null;
}
for (inti=0; i <= m_InvoicePos.Count - 1)
{
IEntity lInvoicePos = (IEntity)m_InvoiceHds
lInvoicePos.Unlock();
}
}

International Scholarly and Scientific Research & Innovation 6(5) 2012

553

REFERENCES

Martin Fowler, “Patterns of Enterprise ApplicatioArchitecture”,
Addison-Wesley Professional, 2002, pp. 64-65

Martin Fowler, “Patterns of Enterprise Applicatiofirchitecture”,
Addison-Wesley Professional, 2002, pp. 416-425

Martin Fowler, “Patterns of Enterprise Applicatiofirchitecture”,
Addison-Wesley Professional, 2002, pp. 426-437

Cosmin Rablou, “Processing complex entities in M¥@plications”,
World Academy of Science, Engineering and Technology, Issue 62,
February 2012, Florence, Italy, pp. 2549.

Glenn E. Krasner, Stephen T. Pope, “A cookbookufing the model-
view controller user interface paradigm in Smath&0”, Journal of
Object-Oriented Programming, August/September 1pp826—49.
Erich Gamma, Richard Helm, Ralph Johnson, JohnsMies, “Design
patterns: elements of reusable object-orientedwso#’, Addison
Wesley, 1994, pp. 127-134.

1SN1:0000000091950263

