Search results for: net zero energy building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3802

Search results for: net zero energy building

3592 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
3591 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
3590 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke

Abstract:

The importance of energy efficiency within the production processes increases steadily. For a comprehensive assessment of energy efficiency within the production process, unfortunately no tools exist or have been developed yet. Therefore the Institute for Factory Automation and Production Systems at the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency namely EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state-of-the-art as well as the developed approaches.

Keywords: Energy efficiency, energy efficiency value, energetic process efficiency, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
3589 Clay Palm Press: A Technique of Hand Building in Ceramics for Developing Conceptual Forms

Authors: Okewu E. Jonathan

Abstract:

There are several techniques of production in the field of ceramics. These different techniques overtime have been categorised under three methods of production which includes; casting, throwing and hand building. Hand building method of production is further broken down into other techniques and they include coiling, slabbing and pinching. Ceramic artists find the different hand building techniques to be very interesting, practicable and rewarding. This has encouraged ceramic artist in their various studios at different levels to experiment for further hand building techniques that could be unique and unusual. The art of “Clay Palm Press” is a development from studio experiment in a quest for uniqueness in conceptual ceramic practise. Clay palm press is a technique that requires no formal tutelage but at the same time, it is not easily comprehensible when viewed. It is a practice of putting semi-solid clay in the palm and inserting a closed fist pressure so as to take the imprint of the human palm. This clay production from the palm when dried, fired and explored into an art, work reveals an absolute awesomeness of what the palm imprint could result in.

Keywords: Ceramics, clay palm press, conceptual forms, hand building, technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
3588 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building

Authors: Ying-Ming Su

Abstract:

Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.

Keywords: Traditional folk houses, Atrium, Earthen building, Ventilation, Building microclimate, PET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
3587 Solar Panel Installations on Existing Structures

Authors: Tim D. Sass, Pe, Leed

Abstract:

The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural design professional is responsible for ensuring a new solar panel installation is properly supported by an existing structure and configured to maximize energy generation.

Keywords: Solar Panel, Structures, Structural Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8088
3586 Present Energy Scenario and Potentiality of Wind Energy in Bangladesh

Authors: Md. Alamgir Hossain, Md. Raju Ahmed

Abstract:

Scarcity in energy sector is a major problem, which can hamper the growing development of a country. Bangladesh is one of the electricity-deprived countries; however, the energy demand of Bangladesh is increasing day by day. Due to the shortage of natural resources and environmental issues, many nations are now moving towards renewable energy. Among various form of renewable energy, wind energy is one of most potential source. In this paper, the present energy condition of Bangladesh is discussed and the necessity of moving towards renewable energy is clarified. The wind speed found at different locations at different heights and different years from the survey of several organizations are presented. Although, the results of installed low capacity wind turbines (from few kW to few tens of kW) operated by private or government organization at different places in Bangladesh are not so encouraging; however, it is shown that Bangladesh has a high potential of using large wind turbine (MW range) for capturing wind energy at different places. The present condition of wind energy in Bangladesh and other countries in the world are also presented to emphasize the requisite of moving towards wind energy.

Keywords: Renewable energy, wind speed, wind power, modern wind turbine, scarcity of power and gas crisis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3568
3585 Energy Savings in Pumps

Authors: N. Dizadji, P. Entezar, A. Shabani

Abstract:

This study presents energy saving in general-purpose pumps widely used in industrial applications. Such pumps are normally driven by a constant-speed electrical motor which in most applications must support varying load conditions. This is equivalent to saying the loading conditions mismatch the designed optimal energy consumption requirements of the intended application thus resulting in substantial energy losses. In the held experiments it was indicated that combination of mechanical and electrical speed drives can contribute to lower energy consumption in the pump without negatively distorting the required performance indices of a typical centrifugal pump at substantially lower energy consumption. The registered energy savings were recorded to be within the 15-40% margin. It was also indicated that although VSDs are installed at a cost, the financial burden is balanced against the earnings resulting from the associated energy savings.

Keywords: Industrial motors, Pumps, Energy consumption, Energy savings, Variable speed drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
3584 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City

Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer

Abstract:

The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study.  The PV systems are placed on the rooftop and on the south façade of the building.  The south-façade PV system, operating as sunshades, consists of two strings:  one at the ground floor and the other one at the first floor.  According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof.  The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools.  The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%.  The simulation outcome was compared and validated to the measured data obtained from the on-site measurement.  In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design.  The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.

Keywords: Building integrated photovoltaics (BIPV) design, energy analysis software, shading losses, solar radiation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
3583 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery energy storage system, energy management system, microgrid, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
3582 Analysis of the Structural Fluctuation of the Permitted Building Areas and Housing Distribution Ratios - Focused on 5 Cities Including Bucheon

Authors: Cheon Sik Min, Hyeong Wook Song, Sook Yeon Shim, Hoon Chang

Abstract:

The purpose of this study was to analyze the correlation between permitted building areas and housing distribution ratios and their fluctuation, and test a distribution model during 3 successive governments in 5 cities including Bucheon in reference to the time series administrative data, and thereby, interpret the results of the analysis in association with the policies pursued by the successive governments to examine the structural fluctuation of permitted building areas and housing distribution ratios. In order to analyze the fluctuation of permitted building areas and housing distribution ratios during 3 successive governments and examine the cycles of the time series data, the spectral analysis was performed, and in order to analyze the correlation between permitted building areas and housing distribution ratios, the tabulation was performed to describe the correlations statistically, and in order to explain about differences of fluctuation distribution of permitted building areas and housing distribution ratios among 3 governments, the goodness of fit test was conducted.

Keywords: The Permitted Building Areas, Housing Distribution Ratios, the Structural Fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
3581 An Investigation of Adjustment of Solar Shading Devices in Office Buildings

Authors: Jian Yao

Abstract:

The purpose of this paper is to investigate the adjust- ment of solar shading devices in office buildings in two different seasons by occupants, and its influence on the lighting control and indoor illuminance levels. The results show that occupants take inappropriate measures both in reducing solar radiation in summer and in admitting solar gains in winter, resulting in an increase in lighting energy and a reduction in indoor illuminance. Therefore, movable shading devices, controlled automatically, are suitable for building applications to reduce energy consumption.

Keywords: Solar shading, adjustment, lighting control, indoor illuminance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
3580 A Brief Review on Recent Trends in Alternative Sources of Energy

Authors: Divya S., Jibin Joseph

Abstract:

Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below

Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
3579 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests

Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.

Keywords: Heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
3578 An Approach for Reducing the End-to-end Delay and Increasing Network Lifetime in Mobile Adhoc Networks

Authors: R. Asokan, A. M. Natarajan

Abstract:

Mobile adhoc network (MANET) is a collection of mobile devices which form a communication network with no preexisting wiring or infrastructure. Multiple routing protocols have been developed for MANETs. As MANETs gain popularity, their need to support real time applications is growing as well. Such applications have stringent quality of service (QoS) requirements such as throughput, end-to-end delay, and energy. Due to dynamic topology and bandwidth constraint supporting QoS is a challenging task. QoS aware routing is an important building block for QoS support. The primary goal of the QoS aware protocol is to determine the path from source to destination that satisfies the QoS requirements. This paper proposes a new energy and delay aware protocol called energy and delay aware TORA (EDTORA) based on extension of Temporally Ordered Routing Protocol (TORA).Energy and delay verifications of query packet have been done in each node. Simulation results show that the proposed protocol has a higher performance than TORA in terms of network lifetime, packet delivery ratio and end-to-end delay.

Keywords: EDTORA, Mobile Adhoc Networks, QoS, Routing, TORA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
3577 Development of Palm Kernel Shell Lightweight Masonry Mortar

Authors: Kazeem K. Adewole

Abstract:

There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production.

Keywords: Building walls, fine aggregate, lightweight masonry mortar, palm kernel shell, wall thermal insulation efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
3576 Development of a Quantitative Material Wastage Management Plan for Effective Waste Reduction in the Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and greenhouse gas (GHG) emissions in the environment of different countries and cities. However, there is little research on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. This paper focuses on the potentialities and importance of material wastage management and reviews the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: Quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
3575 Some Aspects Regarding I. R. Absorbing Materials Based On Thin Alumina Films for Solar-Thermal Energy Conversion, Using X-Ray Diffraction Technique

Authors: Sorina Adriana Mitrea, Silvia Maria Hodorogea, Anca Duta, Luminita Isac, Elena Purghel, Mihaela Voinea

Abstract:

Solar energy is the most “available", ecological and clean energy. This energy can be used in active or passive mode. The active mode implies the transformation of solar energy into a useful energy. The solar energy can be transformed into thermal energy, using solar collectors. In these collectors, the active and the most important element is the absorber, material which performs the absorption of solar radiation and, in at the same time, limits its reflection. The paper presents some aspects regarding the IR absorbing material – a type of cermets, used as absorber in the solar collectors, by X Ray Diffraction Technique (XRD) characterization.

Keywords: Alumina films, solar energy, X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
3574 Preliminary Analysis of Energy Efficiency in Data Center: Case Study

Authors: Xiaoshu Lu, Tao Lu, Matias Remes, Martti Viljanen

Abstract:

As the data-driven economy is growing faster than ever and the demand for energy is being spurred, we are facing unprecedented challenges of improving energy efficiency in data centers. Effectively maximizing energy efficiency or minimising the cooling energy demand is becoming pervasive for data centers. This paper investigates overall energy consumption and the energy efficiency of cooling system for a data center in Finland as a case study. The power, cooling and energy consumption characteristics and operation condition of facilities are examined and analysed. Potential energy and cooling saving opportunities are identified and further suggestions for improving the performance of cooling system are put forward. Results are presented as a comprehensive evaluation of both the energy performance and good practices of energy efficient cooling operations for the data center. Utilization of an energy recovery concept for cooling system is proposed. The conclusion we can draw is that even though the analysed data center demonstrated relatively high energy efficiency, based on its power usage effectiveness value, there is still a significant potential for energy saving from its cooling systems.

Keywords: Data center, case study, cooling system, energyefficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
3573 A Constitutional Approach to the Rights to Water and Energy

Authors: Antonios Maniatis

Abstract:

The present paper focuses on human rights to the water and to the energy and has a scope to promote the legal status on sustainable construction. The right to water constitutes a typical example of 3G fundamental rights, like the right to enjoyment of energy, particularly of electricity, whilst the right to energy efficiency is a right of fourth generation. Both rights to water and energy are examined through their consecration in the framework of the above-mentioned generations. It results that not only decision-makers but also citizens should fight for the further consecration and adequate use of these crucial rights, having to do with the urgent problem of climate change and the sustainable development. The time for the principle of water and energy “rule of law” has come.

Keywords: Climate change law, energy (en + ergon) efficiency, fundamental rights, prosumer, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
3572 Evaluation and Comparison of Seismic Performance of Structural Trusses under Cyclic Loading with Finite Element Method

Authors: Masoud Mahdavi

Abstract:

The structure is made using different members and combining them with each other. These members are basically based on technical and engineering principles and are combined in different ways and have their own unique effects on the building. Trusses are one of the most common and important members of the structure, accounting for a large percentage of the power transmission structure in the building. Different types of trusses are based on structural needs and evaluating and making complete comparisons between them is one of the most important engineering analyses. In the present study, four types of trusses have been studied; 1) Hawe truss, 2) Pratt truss, 3) k truss, and 4) warren truss, under cyclic loading for 80 seconds. The trusses are modeled in 3d using st37 steel. The results showed that Hawe trusses had higher values ​​than all other trusses (k, Pratt and Warren) in all the studied indicators. Indicators examined in the study include; 1) von Mises stresses, 2) displacement, 3) support force, 4) velocity, 5) acceleration, 6) capacity (hysteresis curve) and 7) energy diagram. Pratt truss in indicators; Mises stress, displacement, energy have the least amount compared to other trusses. K truss in indicators; support force, speed and acceleration are the lowest compared to other trusses.

Keywords: Hawe truss, Pratt truss, K truss, Warren truss, cyclic loading, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
3571 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini

Abstract:

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
3570 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy

Abstract:

Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.

Keywords: Energy consumption schedule, load shifting technique, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
3569 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco

Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy

Abstract:

The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.

Keywords: Energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
3568 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
3567 Smart Grid Simulator

Authors: Andrei Ursachi, Dorin Bordeasu

Abstract:

The Smart Grid Simulator is a computer software based on advance algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy factures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that supports the discussion and implementation of the system.

Keywords: Applied Science, Renewable energy sources, Smart Grid, Sustainable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
3566 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: Sustainability, post-disaster temporary housing, integrated value model for sustainability assessment (MIVES), life cycle assessment (LCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
3565 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh

Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu

Abstract:

This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs

Keywords: Agriculture, energy indicator, system dynamics, energy flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
3564 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: Fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
3563 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: Energy calculation, energy consumption, energy simulation, IDA ICE, TMF Energi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052