Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32727
Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City

Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer


The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study.  The PV systems are placed on the rooftop and on the south façade of the building.  The south-façade PV system, operating as sunshades, consists of two strings:  one at the ground floor and the other one at the first floor.  According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof.  The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools.  The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%.  The simulation outcome was compared and validated to the measured data obtained from the on-site measurement.  In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design.  The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.

Keywords: Building integrated photovoltaics (BIPV) design, energy analysis software, shading losses, solar radiation analysis.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424


[1] European Renewable Energy Council, 2010. European Renewable Energy Council (2010). RE-thinking 2050-a 100% renewable energy vision for the European Union. Accessed 2017-09-17 from
[2] Instituto Nacional de Ecología y Cambio Climático INECC. (2013). Inventario de Gases y Compuestos de Efecto Invernadero 2013. (Digital Version) Accessed 2016-09-05 from: // /descargas/cclimatico/2015_inv_nal_ emis_gei_result.pdf.
[3] Secretaría de Energía (SENER). (2014) Balance Nacional de Energía. (Digital Version]. Accessed 2016-11-05 from /44353/Balance_Nacional_de_ Energía_2014.pdf.
[4] Secretaría de Energía (SENER). (2016) Inventario Nacional de Energías Renovables (INERE) (SIE). Accessed 2016-09-15 from:
[5] Jaramillo, O.A., Martínez, M., Tenorio, J.A. y del Río, J.A. (2015). Estrategia de Transición para promover el uso de Tecnologías y Combustibles más limpios en el tema de energía solar: Instituto Nacional de Energías Renovables, Ciudad de México, México: Universidad Nacional Autónoma de México.
[6] Programa de Maestría y Doctorado en Arquitectura (2016). Diagnóstico del Centro de Ciencias de la Complejidad C3. Ciudad de México, México: Universidad Nacional Autónoma de México.
[7] Gómez, M (2016). Datos de sistemas fotovoltaicos del edificio del Centro de Ciencias de la Complejidad C3. Ciudad de México, México: Universidad Nacional Autónoma de México.
[8] Martín, N. y Fernández, I. (2007) La envolvente FOTOVOLTAICA en la Arquitectura. Barcelona, España: Editorial Reverté.
[9] Meinel, A.B. y Meinel, M.P. (1982). Aplicaciones de la energía solar. España: Editorial Reverté.
[10] Hersch, P., Zweibel, K. and Solar Energy Research Institute (1982). Basic Photovoltaic Principles and Methods Volume 6213 of Solar information module, United States: Technical Information Office, Solar Energy Research Institute.
[11] Daniels, K. (1997). Technology of ecological building. Birkhauser Boston.
[12] Alonso-Abella M, Chenlo F. A model for energy production estimation of PV grid connected systems based on energetic losses and experimental data. In: On site diagnosis, European Photovoltaic Solar Energy Conference; 2004. p. 2447–50.
[13] Solartec (2016). S36MC Technical Data Sheet. Accessed 2016-11-05 from: http: //
[14] Kimo Instruments (2018). SL 200 Solarimeter Technical Data Sheet. Accessed 2018-03-15 from: