Search results for: multi-level neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2454

Search results for: multi-level neural networks

2244 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2243 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
2242 Face Detection using Gabor Wavelets and Neural Networks

Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani

Abstract:

This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.

Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
2241 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks

Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra

Abstract:

The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.

Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
2240 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
2239 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

Authors: Rohitash Chandra, Christian W. Omlin

Abstract:

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2238 Neural Network Based Predictive DTC Algorithm for Induction Motors

Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad

Abstract:

In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.

Keywords: Neural Networks, Predictive DTC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
2237 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique

Authors: M. S. Sivagamasundari, P. Melba Mary

Abstract:

Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.

Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346
2236 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar

Abstract:

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

Keywords: Cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
2235 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny

Abstract:

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
2234 Mamdani Model based Adaptive Neural Fuzzy Inference System and its Application

Authors: Yuanyuan Chai, Limin Jia, Zundong Zhang

Abstract:

Hybrid algorithm is the hot issue in Computational Intelligence (CI) study. From in-depth discussion on Simulation Mechanism Based (SMB) classification method and composite patterns, this paper presents the Mamdani model based Adaptive Neural Fuzzy Inference System (M-ANFIS) and weight updating formula in consideration with qualitative representation of inference consequent parts in fuzzy neural networks. M-ANFIS model adopts Mamdani fuzzy inference system which has advantages in consequent part. Experiment results of applying M-ANFIS to evaluate traffic Level of service show that M-ANFIS, as a new hybrid algorithm in computational intelligence, has great advantages in non-linear modeling, membership functions in consequent parts, scale of training data and amount of adjusted parameters.

Keywords: Fuzzy neural networks, Mamdani fuzzy inference, M-ANFIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5244
2233 2n Almost Periodic Attractors for Cohen-Grossberg Neural Networks with Variable and Distribute Delays

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, we investigate dynamics of 2n almost periodic attractors for Cohen-Grossberg neural networks (CGNNs) with variable and distribute time delays. By imposing some new assumptions on activation functions and system parameters, we split invariant basin of CGNNs into 2n compact convex subsets. Then the existence of 2n almost periodic solutions lying in compact convex subsets is attained due to employment of the theory of exponential dichotomy and Schauder-s fixed point theorem. Meanwhile, we derive some new criteria for the networks to converge toward these 2n almost periodic solutions and exponential attracting domains are also given correspondingly.

Keywords: CGNNs, almost periodic solution, invariant basins, attracting domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2232 Comparison of Two Interval Models for Interval-Valued Differential Evolution

Authors: Hidehiko Okada

Abstract:

The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks. 

Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
2231 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
2230 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

Authors: Mengzhuo Luo, Shouming Zhong

Abstract:

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2229 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.

Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
2228 Artificial Neural Network Development by means of Genetic Programming with Graph Codification

Authors: Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, Javier Pereira

Abstract:

The development of Artificial Neural Networks (ANNs) is usually a slow process in which the human expert has to test several architectures until he finds the one that achieves best results to solve a certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically generating ANNs. To do this, the GP algorithm had to be changed in order to work with graph structures, so ANNs can be developed. This technique also allows the obtaining of simplified networks that solve the problem with a small group of neurons. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases. The results of those comparisons show that the system achieves good results comparable with the already existing techniques and, in most of the cases, they worked better than those techniques.

Keywords: Artificial Neural Networks, Evolutionary Computation, Genetic Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
2227 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.

Keywords: Almost periodic solution, exponential stability, neural networks, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14332
2226 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
2225 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2224 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2223 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2222 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

Authors: O. Yavuz, L. Ozyilmaz

Abstract:

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
2221 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression

Authors: S. Anna Durai, E. Anna Saro

Abstract:

In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.

Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2220 Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks

Authors: G. R. Rameshkumar, B. V. A Rao, K. P. Ramachandran

Abstract:

Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.

Keywords: Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
2219 Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays

Authors: Ridha Ghayoula, Mbarek Traii, Ali Gharsallah

Abstract:

In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.

Keywords: Multibeam, modelling, neural networks, synthesis, antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
2218 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
2217 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
2216 H∞ State Estimation of Neural Networks with Discrete and Distributed Delays

Authors: Biao Qin, Jin Huang

Abstract:

In this paper, together with some improved Lyapunov-Krasovskii functional and effective mathematical techniques, several sufficient conditions are derived to guarantee the error system is globally asymptotically stable with H∞ performance, in which both the time-delay and its time variation can be fully considered. In order to get less conservative results of the state estimation condition, zero equalities and reciprocally convex approach are employed. The estimator gain matrix can be obtained in terms of the solution to linear matrix inequalities. A numerical example is provided to illustrate the usefulness and effectiveness of the obtained results.

Keywords: H∞ performance, Neural networks, State estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2215 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield

Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork

Abstract:

The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.

Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332