Search results for: flow regimes
2119 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.
Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22772118 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen
Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang
Abstract:
In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20242117 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow
Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles
Abstract:
The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.Keywords: Baffles length, dished bottom, dead zone, flow field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20922116 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.
Keywords: Numerical study, computational fluid dynamics, air dam, tuning parts, drag, lift force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16362115 An Experimental Study on Effects of Applying the Pulsating Flow to a Gas-Solid Fluidized Bed
Authors: Rezvan Alamian, Alireza Baniassadi, Hassan Basirat Tabrizi
Abstract:
There have been widespread applications of fluidized beds in industries which are related to the combination of gas-solid particles during the last decade. For instance, in order to crack the catalyses in petrochemical industries or as a drier in food industries. High capacity of fluidized bed in heat and mass transfer has made this device very popular. In order to achieve a higher efficiency of fluidized beds, a particular attention has been paid to beds with pulsating air flow. In this paper, a fluidized bed device with pulsating flow has been designed and constructed. Size of particles have been used during the test are in the range of 40 to 100μm. The purpose of this experimental test is to investigate the air flow regime, observe the particles- movement and measure the pressure loss along the bed. The effects of pulsation can be evaluated by comparing the results for both continuous and pulsating flow. Results of both situations are compared for various gas speeds. Moreover the above experiment is numerically simulated by using Fluent software and its numerical results are compared with the experimental results.
Keywords: Fluidized bed, pulsating flow, gas-solid particles, pressure loss, experiments, Fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20712114 Detection of Linkages Between Extreme Flow Measures and Climate Indices
Authors: Mohammed Sharif, Donald Burn
Abstract:
Large scale climate signals and their teleconnections can influence hydro-meteorological variables on a local scale. Several extreme flow and timing measures, including high flow and low flow measures, from 62 hydrometric stations in Canada are investigated to detect possible linkages with several large scale climate indices. The streamflow data used in this study are derived from the Canadian Reference Hydrometric Basin Network and are characterized by relatively pristine and stable land-use conditions with a minimum of 40 years of record. A composite analysis approach was used to identify linkages between extreme flow and timing measures and climate indices. The approach involves determining the 10 highest and 10 lowest values of various climate indices from the data record. Extreme flow and timing measures for each station were examined for the years associated with the 10 largest values and the years associated with the 10 smallest values. In each case, a re-sampling approach was applied to determine if the 10 values of extreme flow measures differed significantly from the series mean. Results indicate that several stations are impacted by the large scale climate indices considered in this study. The results allow the determination of any relationship between stations that exhibit a statistically significant trend and stations for which the extreme measures exhibit a linkage with the climate indices.
Keywords: flood analysis, low-flow events, climate change, trend analysis, Canada
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16002113 Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization
Authors: Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay
Abstract:
Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.Keywords: Active Power Loss, Biogeography-Based Optimization, Migration, Mutation, Optimal Reactive Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42762112 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series
Authors: M. H. Fattahi, H. Jahangiri
Abstract:
All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.Keywords: river flow time series, fractal, river networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882111 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11602110 Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media
Authors: S.M.Hosseinalipour, H.Aghakhani
Abstract:
Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media.Keywords: Buried, Leaking pipe, Porous media, Unsaturated
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23772109 Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow
Authors: A. Abdalla, A. Kaltayev
Abstract:
This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.
Keywords: WENO scheme, non-reflection boundary conditions, NSCBC, supersonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21952108 Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer
Authors: Igor Nedelkovski, Ilios Vilos, Tale Geramitcioski
Abstract:
Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.
Keywords: Navier-Stokes, FEM, condensers, steam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22652107 Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method
Authors: Reza Cheraghi Kootiani, Ariffin Bin Samsuri
Abstract:
To derive the fractional flow equation oil displacement will be assumed to take place under the so-called diffusive flow condition. The constraints are that fluid saturations at any point in the linear displacement path are uniformly distributed with respect to thickness; this allows the displacement to be described mathematically in one dimension. The simultaneous flow of oil and water can be modeled using thickness averaged relative permeability, along the centerline of the reservoir. The condition for fluid potential equilibrium is simply that of hydrostatic equilibrium for which the saturation distribution can be determined as a function of capillary pressure and therefore, height. That is the fluids are distributed in accordance with capillary-gravity equilibrium. This paper focused on the fraction flow of water versus cumulative oil recoveries using Buckley Leverett method. Several field cases have been developed to aid in analysis. Producing watercut (at surface conditions) will be compared with the cumulative oil recovery at breakthrough for the flowing fluid.Keywords: Fractional Flow, Fluid Saturations, Permeability, Cumulative Oil Recoveries, Buckley Leverett Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92532106 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: Ejector, diffuser, multiphase flow, syphon effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9652105 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat
Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam
Abstract:
Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.Keywords: Contraction-expansion flow, integrated microchannel, microchannel network, single phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9092104 Hybrid RANS-LES Simulation of In-Cylinder Air Flow for Different Engine Speeds at Fixed Intake Flow Pressure
Authors: L. V. Fui, A. Ulugbek, S. S. Dol
Abstract:
The in-cylinder flow and mixture formations are significant in view of today’s increasing concern on environmental issues and stringent emission regulations. In this paper, the numerical simulations of a SI engine at different engine speeds (2000-5000 rpm) at fixed intake flow pressure of 1 bar are studied using the AVL FIRE software. The simulation results show that when the engine speed at fixed intake flow pressure is increased, the volumetric efficiency of the engine decreases. This is due to a richer fuel conditions near the engine cylinder wall when engine speed is increased. Significant effects of impingement are also noted on the upper and side walls of the engine cylinder. These variations in mixture formation before ignition could affect the thermodynamics efficiency and specific fuel consumption that would lead to a reduced engine performance.
Keywords: AVL FIRE, fuel mass, IC engine, LES, RANS, turbulent intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24202103 Passive Flow Control in Twin Air-Intakes
Authors: Akshoy R. Paul, Pritanshu Ranjan, Ravi R. Upadhyay, Anuj Jain
Abstract:
Aircraft propulsion systems often use Y-shaped subsonic diffusing ducts as twin air-intakes to supply the ambient air into the engine compressor for thrust generation. Due to space constraint, the diffusers need to be curved, which causes severe flow non-uniformity at the engine face. The present study attempt to control flow in a mild-curved Y-duct diffuser using trapezoidalshaped vortex generators (VG) attached on either both the sidewalls or top and bottom walls of the diffuser at the inflexion plane. A commercial computational fluid dynamics (CFD) code is modified and is used to simulate the effects of SVG in flow of a Y-duct diffuser. A few experiments are conducted for CFD code validation, while the rest are done computationally. The best combination of Yduct diffuser is found with VG-2 arranged in co-rotating sequence and attached to both the sidewalls, which ensures highest static pressure recovery, lowest total pressure loss, minimum flow distortion and less flow separation in Y-duct diffuser. The decrease in VG height while attached to top and bottom walls further improves axial flow uniformity at the diffuser outlet by a great margin as compared to the bare duct.Keywords: Twin air-intake, Vortex generator (VG), Turbulence model, Pressure recovery, Distortion coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21292102 Heat Transfer Characteristics and Fluid Flow past Staggered Flat-Tube Bank Using CFD
Authors: Zeinab Sayed Abdel-Rehim
Abstract:
A computational fluid dynamic (CFD-Fluent 6.2) for two-dimensional fluid flow is applied to predict the pressure drop and heat transfer characteristics of laminar and turbulent flow past staggered flat-tube bank. Effect of aspect ratio ((H/D)/(L/D)) on pressure drop, temperature, and velocity contour for laminar and turbulent flow over staggered flat-tube bank is studied. The theoretical results of the present models are compared with previously published experimental data of different authors. Satisfactory agreement is demonstrated. Also, the comparison between the present study and others analytical methods for the Re number with Nu number is done. The results show as the Reynolds number increases the maximum velocity in the passage between the upper and lower tubes increases. The comparisons show a fair agreement especially in the turbulent flow region. The good agreement of the data of this work with these recommended analytical methods validates the current study.
Keywords: Aspect ratio ((H/D)/(L/D)), CFD, fluid flow, heat transfer, staggered arrangement, tube bank, and turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37512101 An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)
Authors: Rosziati Ibrahim, Siow Yen Yen
Abstract:
System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.Keywords: Data Flow Diagram, Context Diagram, ConsistencyCheck, Syntax and Semantic Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34382100 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of the targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.
Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3452099 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body
Authors: Rabah Haoui
Abstract:
The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.
Keywords: Supersonic flow, viscous flow, finite volume, blunt body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20482098 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow
Authors: Ali Shatnawi
Abstract:
Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25612097 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method
Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati
Abstract:
Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10132096 An Experimental and Numerical Investigation on Gas Hydrate Plug Flow in the Inclined Pipes and Bends
Authors: M. M. Shabani, O. J. Nydal, R. Larsen
Abstract:
Gas hydrates can agglomerate and block multiphase oil and gas pipelines when water is present at hydrate forming conditions. Using "Cold Flow Technology", the aim is to condition gas hydrates so that they can be transported as a slurry mixture without a risk of agglomeration. During the pipeline shut down however, hydrate particles may settle in bends and build hydrate plugs. An experimental setup has been designed and constructed to study the flow of such plugs at start up operations. Experiments have been performed using model fluid and model hydrate particles. The propagations of initial plugs in a bend were recorded with impedance probes along the pipe. The experimental results show a dispersion of the plug front. A peak in pressure drop was also recorded when the plugs were passing the bend. The evolutions of the plugs have been simulated by numerical integration of the incompressible mass balance equations, with an imposed mixture velocity. The slip between particles and carrier fluid has been calculated using a drag relation together with a particle-fluid force balance.
Keywords: Cold Flow Technology, Gas Hydrate Plug Flow Experiments, One Dimensional Incompressible Two Fluid Model, Slurry Flow in Inclined Pipes and Bends, Transient Slurry Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21132095 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number
Authors: A. Nourbakhsh
Abstract:
A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the centerline (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the centerline. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.
Keywords: Suspensions, Poiseuille flow, Effective viscosity, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19162094 Application of Load Transfer Technique for Distribution Power Flow Analysis
Authors: Udomsak Thongkrajay, Padej Pao-La-Or, Thanatchai Kulworawanichpong
Abstract:
Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.Keywords: Load transfer technique, Newton-Raphson power flow, ill-condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492093 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni
Abstract:
A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.
Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21362092 Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.Keywords: Load Modelling, Static, Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20632091 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes
Authors: M. Tarawneh
Abstract:
Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33652090 Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube
Authors: Mesbah. M. Salem, Mohamed. H. Elhsnawi, Saleh B. Mohamed
Abstract:
An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.
Keywords: Pressure drop, heat transfer, distilled water, R134a, micro-tube, laminar and turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3855