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Abstract—The Bernoulli filter is a precise Bayesian filter for single
target tracking based on the random finite set theory. The standard
Bernoulli filter often underestimates the number of the targets.
This study proposes a Gaussian particle flow (GPF) Bernoulli filter
employing particle flow to migrate particles from prior to posterior
positions to improve the performance of the standard Bernoulli filter.
By employing the particle flow filter, the computational speed of
the Bernoulli filters is significantly improved. In addition, the GPF
Bernoulli filter provides more accurate estimation compared with
that of the standard Bernoulli filter. Simulation results confirm the
improved tracking performance and computational speed in two- and
three-dimensional scenarios compared with other algorithms.

Keywords—Bernoulli filter, particle filter, particle flow filter,
random finite sets, target tracking.

I. INTRODUCTION

THE aim of target tracking is to estimate the number of

targets and their states from time-varying measurements.

In complex scenarios, there is a significant amount of clutter

in the measurements obtained by the sensor. Estimation

of the target state from the uncertainty measurements has

become a popular research field. In recent years, several

tracking methods have been developed for this situation.

The multi-target tracking algorithms can be divided into

data association methods [1]–[3] and random finite sets

(RFS) [4]–[6]. The classical multi-target tracking algorithms

based on data association include the joint probabilistic data

association (JPDA) [7], [8] and multiple hypotheses tracking

(MHT) [9]–[12]. Compared with the classical multi-target

tracking algorithms, the RFS methods model the targets and

measurements as RFS, thereby avoiding the data association

problem. Representative methods based on RFS have been

proposed in recent decades, such as the probability hypothesis

density (PHD) filter [13], [14], cardinality PHD (CPHD) filter,

Bernoulli filter, cardinality balanced multi-Bernoulli filter

(CBMeMber) [15], [16], and labelled Bernoulli filter (LMB)

[17], [18]. These filters have been successfully employed

in numerous applications including radar/sonar tracking

[19]–[21], computer vision [22], [23], sensor management

[24], [25], and distributed target tracking [26]–[28]. The PHD

filter propagates the first-order moment of an RFS to estimate

the number of targets and their states. Mahler derived the

CPHD filter, which propagates the cardinality distribution

alongside its first moment. The CPHD filter can obtain more
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precision estimation results compared with the PHD filter, but

at a higher computational cost. A significant disadvantage of

the CPHD filter is the spooky effect [29]. Therefore, other

RFS filters such as Bernoulli, CBMember, and LMB have been

proposed.

The Bernoulli filter is the precise Bayes filter that propagates

the parameters of a Bernoulli RFS for a single dynamic

system, which can randomly switch on and off [15], [30],

[31]. The study [32] used the Bernoulli filter to track a small

UAV and provided the sensible estimates results over time. The

authors developed an extension of the Bernoulli filtering on a

moving platform in [33]. The Bernoulli filter can also be used

in target detection and state estimation in low SNR cases [34]

and moving target scenarios [35]. Gning et al. [36] presented

a new Bernoulli filter based on the box particle filter, where

each sample is represented by the box particle instead of the

particle filter. The authors proposed an improved Bernoulli

particle filter to track an underestimated number of targets

[37]. However, the proposed improved Bernoulli particle filter

still needs a large number of particles and the running time of

this method is even longer than that of the standard Bernoulli

filter.

Considering the implementation method, the Bernoulli filter

has been implemented in two distinct fashions, i.e., as

the Gaussian mixture Bernoulli (GM Bernoulli) filter and

sequential Monte Carlo Bernoulli (SMC Bernoulli) filter.

In the GM Bernoulli filter implementation, the Bernoulli

distribution is assumed to be a GM, whereas in the SMC

Bernoulli filter implementation, it is approximated by a set

of weighted particles. The GM Bernoulli filter needs less

computational resources; however, it is constrained in linear

and mildly nonlinear systems. In contrast, the SMC Bernoulli

filter is more suitable for the non-linear non-Gaussian scenario

and it often requires a large number of particles, particularly

in the high-dimensional state spaces.

To avoid the severe degeneracy induced by sampling in a

high dimensional space, particle flow algorithms were recently

proposed [38]–[42]. The basic idea of a particle flow filter is

migrating the particles from prior to posterior positions over a

pseudo-time variable. The particle flow approach can lead to

improved filter performance, particularly for high-dimensional

state spaces or highly informative measurements. A previous

study [43] employed particle flow to implement the PHD filter.

This study introduced the Gaussian particle flow (GPF) to the

Bernoulli filter to improve its performance.

The benefits of the proposed approach are twofold. First,

more accurate estimation results are obtained because the

proposed particle flow filter can guide the particles to a
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highly likelihood region. Second, high-speed processing is

achieved as fewer samples are needed compared with the SMC

Bernoulli filter.

The remainder of this paper is organised as follows: In

Section II, the problem of target tracking is formulated briefly.

The theory of the standard Bernoulli filter and implementation

of the particle filter is reviewed in Section III. In Section IV,

the GPF Bernoulli filter is proposed in detail. The simulations

setting and results are provided in Section V. In Section VI,

the conclusions and future work are presented.

II. PROBLEM FORMULATION

We suppose Xk and Zk denote the target state and

measurements at time k, then the dynamic system of the target

can be represented as:

theXk = fk|k−1(Xk−1, vk−1) (1)

Zk = hk(Xk, uk) (2)

where fk|k−1(·) and vk−1 denote the state transition function

and process noise vector, respectively; and hk denotes the

measurement function, whereas uk denotes the measurement

noise vector. The measurement function hk is often a nonlinear

function.

In general, the collected measurements can originate from

the target or clutters. The clutter rate λk is often assumed to

follow a Poisson distribution and is independent of the target

state. Moreover, the measurements cannot be obtained within

each time frame because of the detection probability Pd(k) <
1. Thus, the goal of target tracking is to estimate the target

state based on the collected measurements.

III. STANDARD BERNOULLI FILTER

A. Bernoulli Filter Theory

The Bernoulli filter models the target states as a Bernoulli

RFS. A Bernoulli RFS has probability 1−q to be empty or has

only one element whose distribution is based on the probability

density function (PDF) p(x) with probability q. The PDF of

a Bernoulli RFS is obtained as follows:

f(X) =

{
1− q, if X = ∅
q ∗ p(x), if X = {x} (3)

The Bernoulli filter comprises two steps: prediction and

update at each time step [5], [30].

We assume that at time k − 1, the probability of existence

is qk−1|k−1 and the posterior PDF of the target is s(x).
According to [30], the prediction equations at time k are

obtained as follows:

qk|k−1 = pb(1− qk−1|k−1) + psqk−1|k−1 (4)

sk|k−1 =
pb(1− qk−1|k−1)bk|k−1(x)

qk|k−1
+

psqk−1|k−1

∫
fk|k−1(xk|xk−1)sk−1|k−1(xk−1)dxk−1

qk|k−1

(5)

where pb and ps denote the probabilities of the target birth

and the survival target, respectively; and fk|k−1(xk|xk−1) is

the dynamic equation of the target.
After the prediction equation, the predicted density is

obtained from the pair
{
qk|k−1, sk|k−1

}
. Then, the update

equation of the Bernoulli filter can be derived from:

qk|k(x) =
1−Δk

1−Δkqk|k−1
qk|k−1 (6)

sk|k(xk) =
sk|k−1(xk)

1− δk

[
1− Pd(xk) + Pd(xk)

∑
z∈Zk

gk(z|xk)

λkc(z)

]

(7)

where gk(z|xk) denotes the likelihood function of the

measurement z; and c(z) and λ denote the PDF and the

average number of clutter, respectively.
The quantity Δk is defined as:

Δk = Pd(xk)

(
1−

∑
z∈Zk

∫
gk(z|xksk|k−1(xk))dxk

λkc(z)

)
(8)

B. Particle Implementation
The Bernoulli filter can be implemented by a particle filter.

This study used a set of particles
{
xi
k−1, w

i
k−1

}Nk−1

i=1
to

approximate the spatial posterior density function at time k−1

sk−1|k−1(xk−1) =

Nk−1∑
i=1

wi
k−1δ(x

i
k−1) (9)

where xi
k−1 denotes the state of the ith particle, and wi

k−1

is the corresponding weight; Nk−1 denotes the number of

particles at time k−1 and δ(·) is the Dirac delta function. Then,

the prior density sk|k−1 can be approximated by particles as:

sk|k−1(xk) ≈
Nk−1+Nb∑

i=1

wi
k|k−1δ(x) (10)

where Nb denotes the number of birth particles. After

prediction, the total number of particles is Nk|k−1 = Nk−1 +

Nb. The particle set
{
xi
k|k−1, w

i
k|k−1

}Nk|k−1

i=1
is the union of

birth and survival particle sets.{
xi
k|k−1, w

i
k|k−1

}Nk|k−1

i=1
={

xi
k|k−1,s, w

i
k|k−1,s

}Nk−1

i=1
∪ {xi

k,b, w
i
k,b

}Nb

i=1

(11)

The updated probability of existence can be expressed as:

qk|k(x) =
1−Δk

1−Δkqk|k−1
qk|k−1 (12)

where

Δk = Pd −
∑
z∈Zk

Nk|k−1∑
i=1

pDgk(z|xi
k|k−1)

λkc
wi

k|k−1 (13)

and the updated spatial PDF of the target is expressed as:

sk|k(x) =
Nk|k−1∑
i=1

wi
k|kδ(xki) (14)
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where the updated weights are computed as:

wi
k|k =

1− pD +
∑

z∈Zk

pDgk(z|xi
k|k−1)

λkc

1−Δk
wi

k|k−1 (15)

Finally, the resample step of the particle filter also needs to

avoid the degeneration of the SMC Bernoulli filter. After the

resampling step, the number of particles is changed to Nk.

(a) Prediction (b) Update

(c) Resample

Fig. 1 Abstract representation of the SMC Bernoulli filter showing its 2D
state space for a single target

Fig. 1 shows the SMC Bernoulli filter at time k. In Fig. 1 (a),

during the prediction of the SMC Bernoulli filter, the prior of

the target density function is represented by the equal weight

particles. In Fig. 1 (b), when the measurements arrive, the

weights of the particles are updated using these measurements.

The high-weight particles are represented by a coloured

square shape. In the resampling step, the particles must be

resampled based on their weights. The resampling method can

abnegate low-weight particles and copy high-weight particles,

as shown in Fig. 1 (c). Notably, the particle positions remained

unchanged in one cycle. To obtain a better estimate result, the

SMC Bernoulli filter requires more particles to guarantee that

the maximum number of particles can fill the nearby target.

However, this increases computational complexity.

IV. GAUSSIAN PARTICLE FLOW BERNOULLI FILTER

This section describes the particle flow filter implementation

of the Bernoulli filter under a Gaussian assumption. During the

update step of the SMC Bernoulli filter, the particles do not

change and only their weights evolve. It is difficult to guide

particles to appropriate regions. The SMC Bernoulli filter does

not have a state correction mechanism. The proposed method

addressed this problem. The novelty of the GPF Bernoulli

filter lies in the technique used for the particle flow filter. The

particle flow filter migrates particles to regions of interest using

a homotopy idea. The proposed method attempts to correct the

particle state using a particle flow filter in the region of higher

likelihood at each time step. The idea is similar to that of the

GM Bernoulli filter, but each Gaussian is represented by a

group of particles, where the group particles are updated by

the particle flow filter.

The details of the particle flow filter implementation of the

Bernoulli filter are as follows:

A. prediction

Suppose that at time k − 1, the posterior of the target

density is a pair πk−1 =
{
qk−1|k−1, sk−1|k−1

}
. The PDF

sk−1|k−1(xk−1) is approximated as a Gaussian sum form as

follows:

sk−1|k−1(xk−1) =

Jk−1∑
j=1

wj
k−1N (x;mj

k−1, P
j
k−1) (16)

Each Gaussian N (x;mj
k−1, P

j
k−1) contains a corresponding

particle set
{
xI,j
k−1|k−1

}M

i=1
. Then, the surviving particle is

predicted as:

xi,j
k|k−1 = fk|k−1(xk|xi

k−1, Zk−1) (17)

The corresponding mean mj
k|k−1 and covariance P j

k|k−1 were

computed as:

mj
k|k−1 =

1

M

M∑
i=1

xi,j
k|k−1

P j
k|k−1 =

1

M

M∑
i=1

(mj
k|k−1 − xi,j

k|k−1)(m
j
k|k−1 − xi,j

k|k−1)
T

(18)

For the Bernoulli RFS {pb, bk(x)}, draw M particles{
xi,j
b,k

}M

i=1
∼ N (·;mj

b|k, P
j
b|k) for each birth component.

Then, the predicted density is a union of the survival Gaussian

and birth components. The number of Gaussian components

is obtained as: Jk|k−1 = Jk−1 + Jk,b

{
wj

k|k−1,m
j
k|k−1, P

j
k|k−1,

{
xi,j
k|k−1

}M

i=1

}Jk−1

j=1⋃{
wj

b,km
j
b,k, P

j
b,k,
{
xi,j
b,k

}M

i=1

}Jk,b

j=1

(19)

B. Update

We suppose that at time k, the predicted density is in a

multi-Bernoulli form as:

πk|k−1 =
{
qik|k−1, s

i
k|k−1(x)

}Lk|k−1

i=1
(20)

Then, the probability of existence is updated as:

qk|k =
1−Δk

1−Δkqk|k−1
qk|k−1 (21)

The PDF is updated as:

sk|k(x) =
1− PD,k

1−Δk
sk|k−1(x)+

PD,k

1−Δk

∑
z∈Zk

Jk|k−1∑
j=1

wj
k|k−1g

j
k(z)

λc(z)
N (x;mj

k|k, P
j
k|k)

(22)
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Algorithm 1 Pseudo-code for particle flow motion algorithm

Given {xj}j=1,...,M , P,Rk, z
set Δ = 0.1, λ,Nλ = 10
for i = 1 to Nλ do

λ = i ·Δλ
Calculate the mi =

1
M

∑M
j=1 xj

Calculate the Hmi by linearising measurement function

at mi

A = − 1
2PHT

mi
(λHmi

PHT
mi

+Rk)
−1Hmi

b = (I + 2λA)[(I + λA)PHT
mi

R−1
k z +Ami]

for j = 1 to M do
Migrate particles:xj = xj +Δλ(Axj + b)

end for
end for
output: {xj}j=1,...,M

where

Δk = PD,k[1−
∑
z∈Zk

Jk|k−1∑
j=1

wj
k|k−1g

j
k(z)

λc(z)
] (23)

gjk(z) = N (z;Hkm
j
k|k−1, HkP

j
k|k−1H

T
k +R) (24)

where c(z) denotes the clutter distribution, λ denotes the

average clutter rate, and Hk denotes the Jacobian of the

measurement function.

C. Correction

For each Gaussian component N (x;mi
k|k−1, P

i
k|k−1), the

corresponding particle set is
{
xi,j
k|k−1

}
, i = 1, ...,M, j =

1, ..., Jk|k−1. Therefore, particles can be directly migrated by

their flow. For j = 1, ..., Jk|k−1 and for each z ∈ Zk, the

particles migrate based on Algorithm 1. In this algorithm,

P denotes the covariance matrix of the corresponding

particles {xj}j=1,...,M and Rk denotes the measurement noise

covariance matrix. The particle flow parameters Δλ and Nλ

were used to migrate the particles in the discrete pseudo-time

step.

For each Gaussian component, N (x;mj
k|k−1, P

j
k|k−1),

mj
k|k, and P j

k|k are updated accordingly as:

mj
k|k =

1

M

M∑
i=1

xi,j
k|k

P j
k|k =

1

M

M∑
i=1

(mj
k|k−1 − xi,j

k|k)(m
j
k|k − xi,j

k|k)
T

(25)

Similar to the GM Bernoulli filter, the GPF Bernoulli

filter also suffers from computational consumption problems

resulting from increasing Jk as time evolves and the

particle flow computational cost. Therefore, a similar

pruning procedure can be exploited by discarding sk|k with

light-associated probabilities or merging those sufficiently

close to each other into one sk|k. For particle flow

computations, the computations can be reduced by only

performing particle flow migration on sk|k with higher

Algorithm 2 Pseudo-code for progressive GPF Bernoulli filter

Given posterior density at time k − 1{
mi

k−1, P
i
k−1, w

i
k−1

}Jk−1

i=1
, birth intensity at time k

γ(x;ml
γ,k, P

l
γ,k)

Jγk

l=1 , the existence probability qk−1|k−1

for i = 0 to Jk−1 do
draw M particles xi,j

k−1, j = 1, ...,M
for j = 1 to M do

xi,j
k|k−1 = f(xi,j

k−1)
end for
wi

S,k|k−1 = pS,kw
i
k−1,m

i
S,k|k−1 =

∑M
j=1 xi,j

k|k−1

M , P i
k|k =

∑M
j=1(x

i,j
k|k−1

−mi
S,k|k−1)(x

i,j
k|k−1

−mi
S,k|k−1)

T

M
end for
mk|k−1 = mS,k|k−1, Pk|k−1 = PS,k|k−1, wk|k−1 =
wS,k|k−1

for l = 1 to Jγ,k do
m

Jk−1+l
k|k−1 = ml

γ,k, P
Jk−1+l
k|k−1 = P l

γ,k, w
Jk−1+l
k|k−1 = wl

γ,k

end for
Jk|k−1 = Jk−1 + Jγ,k
Compute qk|k−1 = pb(1− qk−1|k−1 + psqk−1|k−1)

for l = 1 to Jk|k−1 do
wl

k|k = (1 − PD,k)w
l
k|k−1 ,P l

k|k = P l
k|k−1,m

l
k|k =

ml
k|k−1

end for

i = 0
for each observation z ∈ Zk do

i = i+ 1
for l = 1 to Jk|k−1 do

H l
k = ∂hk(xk,0)

∂xk
|xk=ml

k|k−1

ηlk|k−1 = hk(m
l
k|k−1, 0)

Sl
k = Rk +H l

kP
l
k|k−1H

l
k

T

w
iJk|k−1+l

k = PD,kw
l
k|k−1g(z; η

l
k|k−1, S

l
k)

end for
for l = 1 to Jk|k−1 do

xk|k = ParticleFlow({x̂i,j
k|k−1}i=1,...,M , P l

k|k−1, Rk, z)
according to Algorithm 1.

end for
end for
Jk = iJk|k−1 + Jk|k−1

Update qk|k according the equation (21)

Compute mk|k and Pk|k according the equation (25)

output:
{
wi

k,m
i
kP

i
k

}
i=1,...,Jk

, qk|k

associated weights. Because the influence of sk|k with a

low associated weight is negligible, its flow computation is

unnecessary. The pseudocode for the GPF Bernoulli filter at

time k is presented in Algorithm 2.

Fig. 2 illustrates three phases of the GPF Bernoulli Filter

at time k. In the prediction and update process, it is

almost the same as the standard Bernoulli Filter. However,

to avoid selecting particles for the correction phase, this

study employed the idea of the Gaussian mixture. Each

particle set can be expressed as a Gaussian component. In
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(a) Prediction (b) Update

(c) Correction

Fig. 2 Abstract representation of the GPF Bernoulli filter showing its 2D
state space for a single target

the implementation, only the particle set with a high weight

was migrated or corrected using a particle flow filter.
Remark: It is important to note that there exist several

different realisations for the particle flow filter, such as exact

Daum and Huang filter [40], non-zero diffusion particle flow

filter [44], and incompressible flow filter [45]. In some cases,

Gromov’s method, as explained in [46]–[48], improves the

particle flow filter performance.

V. SIMULATION RESULTS AND DISCUSSIONS

In the numerical study, two-dimensional (2D) and

three-dimensional (3D) target-tracking scenarios were used to

evaluate the tracking performance of the proposed Bernoulli

filter with a standard Bernoulli filter. The experimental

environment was: IntelTM CoreTM i5, 8 GB Memory and

MATLAB. The evaluation metric in the experiment was the

optimal subpattern assignment (OSPA) distance [49].

A. Scenario 1
To verify the performance of the proposed filter in tracking

problems, this study utilised a simulation scenario using

the bearing and range tracking models. Considering the

[−1000, 1000]× [−1000, 1000] region, targets move according

to the nonlinear Gaussian dynamics, as expressed in (26),

where the target state xk = [x1,k, x2,k, x3,k, x4,k]
T comprises

the position [x1,k, x3,k]
T , velocity [x2,k, x4,k]

T at time step

k, and sampling period T = 1s. A nonlinear scenario with

up to one target involving target birth, death, and clutter

measurements is considered. The state transition model is as

follows:

xk+1 = F (ωk)xk +Gωk+1 = ωk +Δuk (26)

where

F (ω) =

⎡
⎢⎢⎣

1 sinωΔ
ω 0 − 1−cosωΔ

ω
0 cosωΔ 0 −sinωΔ
0 1−cosωΔ

ω 1 sinωΔ
ω

0 sinωΔ 0 cosωΔ

⎤
⎥⎥⎦

G =

⎡
⎢⎢⎣

Δ2/2 0
Δ 0
0 Δ2/2
0 Δ

⎤
⎥⎥⎦

wk ∼ N (·; 0, σ2
wI), uk ∼ N (·; 0, σ2

uI),Δ = 1s,σw =
15m/s2,and σu = π/180rad/s.

zk =

[
arctan((px − x)/(py − y))√

(px − x)2 + (py − y)2

]
+ εk (27)

where εk ∼ N (·; 0, Rk), Rk = diag([σ2
θ , σ

2
r ]

T ), σθ =
π/180, σr = 1. x = 0, y = 0 denote the sensor positions.

In the simulation, the clutter was modelled as a Poisson RFS

with a mean rate of 10 per scan. The GPF Bernoulli filter was

compared with the GM Bernoulli filter, SMC Bernoulli filter1

with 3000 particles, and SMC Bernoulli filter2 with 5000

particles. In the GM Bernoulli and GPF Bernoulli filters, the

maximum number of Gaussian components was set as 100, and

the Gaussian component was pruned with threshold 1e−5 and

merged with 4. Each Gaussian component corresponded to 20
particles. The OSPA distance parameters are set as p = 1 and

c = 100. Two different scenarios with detection probabilities

PD = 0.7 and PD = 0.9 were considered.

Fig. 3 shows the OSPA distance for three filters. Under

low probability detection, increased particle numbers cannot

improve the SMC Bernoulli filter estimated result owing to the

lack of measurement information. The improved performance

of the GPF Bernoulli filter was attributed to the particle

flow factor. At each time step, the particles are driven by

measurements from prior to the posterior positions.
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Fig. 3 Average OSPA over 100 Monte Carlo runs under Pd = 0.7

Fig. 4 shows the averaged OSPA distance for PD = 0.9.

It is clear that by increasing the number of particles, the

SMC Bernoulli filter performance can be improved to obtain

more measurement information. However, under different

probability detections, all GPF Bernoulli filters perform better

than the other filters. The benefit of using a particle flow filter

is shown in Figs. 3 and 4.
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Fig. 4 Average OSPA over 100 Monte Carlo runs under Pd = 0.9

B. Scenario 2: 3D Target Tracking

The 3-degrees of freedom kinematic model is expressed as:

X(k) = FX(k − 1) +Gw(k − 1) (28)

The state vector X comprises the position, velocity, and

acceleration. The transition matrix F and noise gain matrix

are obtained as:

F = diag[Φ Φ Φ] G = diag[η η η] (29)

where Φ =

⎡
⎣ 1 T T 2/2

0 1 T
0 0 1

⎤
⎦ η =

⎡
⎣ T 3/6

T 2/2
T

⎤
⎦ T = 0.25 is a

sampling interval, the process-noise variance q = 10.

The measurements were captured using an infrared

search-and-track sensor (IRST) and radar. The IRST can

measure the azimuth θ and elevation φ, whereas the radar

can measure azimuth θ, elevation φ, and range r. The

measurements comprise information from the IRST and radar;

thus, the measurement vector is obtained as:

zk =

[
zirk
zrdk

]
(30)

where zirk = [θirk φir
k ] and zrdk = [θrdk φrd

k rrdk ]
correspond to the IRST and radar measurements, respectively.

The corresponding measurement noise covariance can be

expressed as:

R =

[
Rir

k 0
0 Rrd

k

]
(31)

where Rir
k =

[
(σir

θ )2 0
0 (σir

φ )2

]
and Rrd

k =⎡
⎣ (σrd

θ )2 0 0
0 (σrd

φ )2 0

0 0 (σrd
r )2

⎤
⎦.

The GPF Bernoulli filter was also compared with the GM

Bernoulli filter, SMC Bernoulli filter1 with 10000 particles,

and SMC Bernoulli filter2 with 50000 particles. In the GM

Bernoulli and GPF Bernoulli filters, the maximum number of

Gaussian components was set as 1000 and 100, respectively,

and the Gaussian component was pruned with threshold 1e−5
and merged with 4. Each Gaussian component corresponds to

50 particles. The OSPA distance parameters are set as p = 1
and c = 100.

Two different scenarios with detection probabilities PD =
0.7 and PD = 0.9 were considered.
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Fig. 5 Average OSPA over 100 Monte Carlo runs under Pd = 0.7 in the 3D
scenario

Fig. 5 shows the OSPA distances for the three filters under

detection probability PD = 0.7. It is observed that the GPF

Bernoulli filter has a lower OSPA distance compared to those

of the GM and SMC Bernoulli filters, and even increases the

Gaussian components and number of particles.
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Fig. 6 Average OSPA over 100 Monte Carlo runs under Pd = 0.9 in the 3D
scenario

Fig. 6 shows the average OSPA over 100 Monte Carlo

runs under Pd = 0.9 in the 3D scenario. With an increased

detection probability, the SMC Bernoulli filter2 performs

similarly to the GPF implementation.

Fig. 7 shows the average OSPA error for different Pd. The

SMC Bernoulli filter1 with a low number of particles suffers

from a high OSPA error. With an increase in the number
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Fig. 7 OSPA error box plot for different Pd

of particles to 5000, the OSPA error of the SMC Bernoulli

filter2 was slightly higher than that of the GPF Bernoulli filter.

Table I lists the results of the filter performance in terms of

Pd = 0.7 and Pd = 0.9. The average OSPA distance and

computation time (CT) obtained for all filters averaged over

100 Monte Carlo runs. It can be observed from this table

that the performance of the SMC Bernoulli filter appears to

improve as the number of particles increases, accompanied by

a rapid increase in the computing time. The proposed GPF

Bernoulli filter exhibits superior performance in terms of the

average OSPA distance under different detection probabilities.

TABLE I
FILTER PERFORMANCE IN TERMS OF DIFFERENT Pd , AVERAGE OSPA

DISTANCE AND CT

Pd Filter OSPA(m) CT(s)

0.7

SMC Bernoulli Filter1 32.36 54.85

SMC Bernoulli Filter2 12.78 707.66

GPF Bernoulli Filter 5.55 1.28

GM Bernoulli Filter 20.33 0.63

0.9

SMC Bernoulli Filter1 24.03 57.25

SMC Bernoulli Filter2 5.87 715.97

GM Bernoulli Filter 4.00 1.57

GPF Bernoulli Filter 18.25 0.58

Notably, the running time of the SMC Bernoulli filter2

is longer than that of the GPF Bernoulli filter. This can be

explained by the fact that the particle flow filter requires fewer

particles, even in the high-dimensional state space.

VI. CONCLUSION

This study proposed a GPF Bernoulli filter to improve the

standard Bernoulli filter performance. The GPF Bernoulli filter

is based on a particle flow filter, where the particles are

guided by measurements. By applying the particle flow filter to

the Bernoulli filter, the computational speed was significantly

improved. Meanwhile, the particles migrated to the highly

likelihood regions, producing a more robust and accurate

tracking performance. The simulation results demonstrate that

the GPF Bernoulli filter achieves a much faster processing

speed compared with the standard SMC Bernoulli filter,

as well as better estimation results for different detection

probabilities. Future work will focus on improving the label

multi-Bernoulli filter with a particle flow filter.
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