Search results for: component reusability
736 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine
Abstract:
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807735 Capacity of Anchors in Structural Connections
Authors: T. Cornelius, G. Secilmis
Abstract:
When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connectionsKeywords: Robustness, anchors, connections, aircrete, prefabricated components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022734 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production
Authors: Homa Torabizadeh, Mohaddeseh Mikani
Abstract:
Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.
Keywords: High fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263733 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis
Authors: V. Venkatachalam, S. Selvan
Abstract:
The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746732 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.
Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291731 An Automatic Pipeline Monitoring System Based on PCA and SVM
Abstract:
This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016730 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.
Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421729 Integrated Flavor Sensor Using Microbead Array
Authors: Ziba Omidi, Min-Ki Kim
Abstract:
This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.
Keywords: Optical Sensor, Semiconductor manufacturing, Smell sensor, Taste sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711728 Web-Based Architecture of a System for Design Assessment of Night Vision Devices
Authors: Daniela I. Borissova, Ivan C. Mustakerov, Evgeni D. Bantutov
Abstract:
Nowadays the devices of night vision are widely used both for military and civil applications. The variety of night vision applications require a variety of the night vision devices designs. A web-based architecture of a software system for design assessment before producing of night vision devices is developed. The proposed architecture of the web-based system is based on the application of a mathematical model for designing of night vision devices. An algorithm with two components – for iterative design and for intelligent design is developed and integrated into system architecture. The iterative component suggests compatible modules combinations to choose from. The intelligent component provides compatible combinations of modules satisfying given user requirements to device parameters. The proposed web-based architecture of a system for design assessment of night vision devices is tested via a prototype of the system. The testing showed the applicability of both iterative and intelligent components of algorithm.
Keywords: Night vision devices, design modeling, software architecture, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153727 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.
Keywords: Connected component labeling, image processing, morphological processing, optical musical recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930726 Face Localization and Recognition in Varied Expressions and Illumination
Authors: Hui-Yu Huang, Shih-Hang Hsu
Abstract:
In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.
Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491725 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.
Keywords: Computer-aided system, detection, image segmentation, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544724 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms
Authors: S. Umarani, D. Sharmila
Abstract:
A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).
Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279723 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell
Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz
Abstract:
Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.
Keywords: Component, robotic, automated, production, offline programming, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112722 Modeling Directional Thermal Radiance Anisotropy for Urban Canopy
Authors: Limin Zhao, Xingfa Gu, C. Tao Yu
Abstract:
one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.Keywords: Directional thermal radiance, multiple scattering, configuration factor, urban canopy, hot spot effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604721 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.
Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365720 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622719 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608718 Parents’ Opinions on Compulsory Pre-school Attendance in the Czech Republic
Authors: Beata Hornickova, Sona Lorencova
Abstract:
The study deals with the presentation of the results of qualitatively oriented research, which was carried out in the scope of determining the attitudes of parents to preschool education in the Czech Republic. The research is conceived as an entry into the field of the researched issue and aimed to support the effectiveness of the items of the questionnaire, which was subsequently created based on the parents’ statements from interviews. The research method was interview with 15 parents of preschool children. The main aim of the interviews was to find out their views on the compulsory attendance of their children in kindergarten. Compulsory pre-school attendance has been introduced in the Czech Republic since 2017/18 with the aim of reducing delays in the entry of children into primary school and eliminating subsequent school failures. The findings offered a look at the differing views on compulsory kindergarten school influenced by the different socio-economic status of parents. Parents with a higher socio-economic status attached greater importance to the educational component of compulsory preschool attendance as a preparation for primary school, while parents with a lower socio-economic status emphasized the educational component. An interesting finding is also a statement from interviews of a parent who does not find benefits in compulsory preschool attendance.Keywords: Compulsory pre-school education, education of preschool children, kindergarten, parents’ opinions on pre-school education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591717 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers
Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic
Abstract:
In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858716 Robot Control by ERPs of Brain Waves
Authors: K. T. Sun, Y. H. Tai, H. W. Yang, H. T. Lin
Abstract:
This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.
Keywords: Brain-computer interface (BCI), event-related potentials (ERPs), robot control, severe physical disabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598715 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon
Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison
Abstract:
Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.
Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446714 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation
Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova
Abstract:
Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.Keywords: Supported copper-manganese-lanthanum catalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213713 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481712 Blind Source Separation for Convoluted Signals Based on Properties of Acoustic Transfer Function in Real Environments
Authors: Takaaki Ishibashi
Abstract:
Frequency domain independent component analysis has a scaling indeterminacy and a permutation problem. The scaling indeterminacy can be solved by use of a decomposed spectrum. For the permutation problem, we have proposed the rules in terms of gain ratio and phase difference derived from the decomposed spectra and the source-s coarse directions. The present paper experimentally clarifies that the gain ratio and the phase difference work effectively in a real environment but their performance depends on frequency bands, a microphone-space and a source-microphone distance. From these facts it is seen that it is difficult to attain a perfect solution for the permutation problem in a real environment only by either the gain ratio or the phase difference. For the perfect solution, this paper gives a solution to the problems in a real environment. The proposed method is simple, the amount of calculation is small. And the method has high correction performance without depending on the frequency bands and distances from source signals to microphones. Furthermore, it can be applied under the real environment. From several experiments in a real room, it clarifies that the proposed method has been verified.Keywords: blind source separation, frequency domain independent component analysys, permutation correction, scale adjustment, target extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437711 Pattern Recognition Based Prosthesis Control for Movement of Forearms Using Surface and Intramuscular EMG Signals
Authors: Anjana Goen, D. C. Tiwari
Abstract:
Myoelectric control system is the fundamental component of modern prostheses, which uses the myoelectric signals from an individual’s muscles to control the prosthesis movements. The surface electromyogram signal (sEMG) being noninvasive has been used as an input to prostheses controllers for many years. Recent technological advances has led to the development of implantable myoelectric sensors which enable the internal myoelectric signal (MES) to be used as input to these prostheses controllers. The intramuscular measurement can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk thus allowing for more independent control sites. However, little work has been done to compare the two inputs. In this paper we have compared the classification accuracy of six pattern recognition based myoelectric controllers which use surface myoelectric signals recorded using untargeted (symmetric) surface electrode arrays to the same controllers with multichannel intramuscular myolectric signals from targeted intramuscular electrodes as inputs. There was no significant enhancement in the classification accuracy as a result of using the intramuscular EMG measurement technique when compared to the results acquired using the surface EMG measurement technique. Impressive classification accuracy (99%) could be achieved by optimally selecting only five channels of surface EMG.
Keywords: Discriminant Locality Preserving Projections (DLPP), myoelectric signal (MES), Sparse Principal Component Analysis (SPCA), Time Frequency Representations (TFRs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406710 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199709 Impact of Hepatitis C Virus Chronic Infection on Quality of Life in Egypt
Authors: Ammal M. Metwally, Ghada A. Abdel-Latif, Walaa A. Fouad, Thanaa M. Rabah, Amira Mohsen, Fatma A. Shaaban, Iman I. Salama
Abstract:
The study aimed at determining the impact of chronic hepatitis C virus (HCV) infection on patients’ Quality of Life (QoL), its relation to geographical characteristics of patients, awareness of the disease, treatment regimen, co-morbid psychiatric or other diseases. 457 patients were randomly selected from ten National Treatment Reference Centers of Ministry of Health hospitals from four community locations representing Egypt. Health related QoL assessment questionnaire with the 36-item Short Form used for assessment of the enrolled patients. The study showed no significant difference between HCV patients in different governorates as regards total QoL. Females, illiterate patients and those had bilharziasis, diabetes mellitus, hypertension or were depressed had significantly the lowest QoL score. HCV patients who knew the danger of the disease had significant lower mean score of physical and mental health components. Optimal care of overall well-being of HCV patients requires adequate knowledge of their neurological and psychological status. It is important to know how to cope with having a family member with hepatitis C and more importantly to know what should you say and what shouldn’t you say as a positive hopeful attitude is essential for combating HCV chronic infection.
Keywords: Hepatitis C virus chronic infection, physical health component and mental health component of QoL, total quality of life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064708 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726707 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW
Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari
Abstract:
Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3900