Search results for: Multibody dynamics
675 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide
Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov
Abstract:
The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.
Keywords: Refractometric method, dielectric constant, molecular dynamics, aqueous solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002674 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States
Authors: A. Iqbal, N. Khalid, S. Rafiq
Abstract:
The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153673 Studying Frame-Resistant Steel Structures under Near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580672 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.
Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538671 An Overview of Project Management Application in Computational Fluid Dynamics
Authors: Sajith Sajeev
Abstract:
The application of Computational Fluid Dynamics (CFD) is widespread in engineering and industry, including aerospace, automotive, and energy. CFD simulations necessitate the use of intricate mathematical models and a substantial amount of computational power to accurately describe the behavior of fluids. The implementation of CFD projects can be difficult, and a well-structured approach to project management is required to assure the timely and cost-effective delivery of high-quality results. This paper's objective is to provide an overview of project management in CFD, including its problems, methodologies, and best practices. The study opens with a discussion of the difficulties connected with CFD project management, such as the complexity of the mathematical models, the need for extensive computational resources, and the difficulties associated with validating and verifying the results. In addition, the study examines the project management methodologies typically employed in CFD, such as the Traditional/Waterfall model, Agile and Scrum. Comparisons are made between the advantages and disadvantages of each technique, and suggestions are made for their effective implementation in CFD projects. The study concludes with a discussion of the best practices for project management in CFD, including the utilization of a well-defined project scope, a clear project plan, and effective teamwork. In addition, it highlights the significance of continuous process improvement and the utilization of metrics to monitor progress and discover improvement opportunities. This article is a resource for project managers, researchers, and practitioners in the field of CFD. It can aid in enhancing project outcomes, reducing risks, and enhancing the productivity of CFD projects. This paper provides a complete overview of project management in CFD and is a great resource for individuals who wish to implement efficient project management methods in CFD projects.
Keywords: Project management, Computational Fluid Dynamics, Traditional/Waterfall methodology, agile methodology, scrum methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777670 Molecular Dynamics of Fatty Acid Interacting with Carbon Nanotube as Selective Device
Authors: David L. Azevedo, Jordan Del Nero
Abstract:
In this paper we study a system composed by carbon nanotube (CNT) and bundle of carbon nanotube (BuCNT) interacting with a specific fatty acid as molecular probe. Full system is represented by open nanotube (or nanotubes) and the linoleic acid (LA) relaxing due the interaction with CNT and BuCNT. The LA has in his form an asymmetric shape with COOH termination provoking a close BuCNT interaction mainly by van der Waals force field. The simulations were performed by classical molecular dynamics with standard parameterizations. Our results show that these BuCNT and CNT are dynamically stable and it shows a preferential interaction position with LA resulting in three features: (i) when the LA is interacting with CNT and BuCNT (including both termination, CH2 or COOH), the LA is repelled; (ii) when the LA terminated with CH2 is closer to open extremity of BuCNT, the LA is also repelled by the interaction between them; and (iii) when the LA terminated with COOH is closer to open extremity of BuCNT, the LA is encapsulated by the BuCNT. These simulations are part of a more extensive work on searching efficient selective molecular devices and could be useful to reach this goal.Keywords: Carbon Nanotube, Linoleic Acid, MolecularDynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681669 Multiple-Points Fault Signature's Dynamics Modeling for Bearing Defect Frequencies
Authors: Muhammad F. Yaqub, Iqbal Gondal, Joarder Kamruzzaman
Abstract:
Occurrence of a multiple-points fault in machine operations could result in exhibiting complex fault signatures, which could result in lowering fault diagnosis accuracy. In this study, a multiple-points defect model (MPDM) is proposed which can simulate fault signature-s dynamics for n-points bearing faults. Furthermore, this study identifies that in case of multiple-points fault in the rotary machine, the location of the dominant component of defect frequency shifts depending upon the relative location of the fault points which could mislead the fault diagnostic model to inaccurate detections. Analytical and experimental results are presented to characterize and validate the variation in the dominant component of defect frequency. Based on envelop detection analysis, a modification is recommended in the existing fault diagnostic models to consider the multiples of defect frequency rather than only considering the frequency spectrum at the defect frequency in order to incorporate the impact of multiple points fault.
Keywords: Envelop detection, machine defect frequency, multiple faults, machine health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274668 Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics
Authors: Neville Fernandes, Satish Shenoy B., Raghuvir Pai B., Rammohan S. Pai B, Shrikanth Rao.D
Abstract:
This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.
Keywords: CFD, multiple axial groove, Water lubricated, Stiffness and Damping Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134667 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble
Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani
Abstract:
Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.
Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526666 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.
Keywords: Wind noise, computational fluid dynamics, finite element method, passenger car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861665 Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution
Authors: Rouhollah Ahmadi, Tatsuya Ueno, Tomio Okawa
Abstract:
Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value.Keywords: Subcooled flow boiling, Bubble dynamics, Void fraction, Sliding bubble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043664 Studying Frame-Resistant Steel Structures under near Field Ground Motion
Authors: S. A. Hashemi, A. Khoshraftar
Abstract:
This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795663 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank
Authors: Thiyam Tamphasana Devi, Bimlesh Kumar
Abstract:
A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195662 Numerical Simulation of the Liquid-Vapor Interface Evolution with Material Properties
Authors: Kimou Kouadio Prosper, Souleymane Oumtanaga, Tety Pierre, Adou Kablan Jérôme
Abstract:
A satured liquid is warmed until boiling in a parallelepipedic boiler. The heat is supplied in a liquid through the horizontal bottom of the boiler, the other walls being adiabatic. During the process of boiling, the liquid evaporates through its free surface by deforming it. This surface which subdivides the boiler into two regions occupied on both sides by the boiled liquid (broth) and its vapor which surmounts it. The broth occupying the region and its vapor the superior region. A two- fluids model is used to describe the dynamics of the broth, its vapor and their interface. In this model, the broth is treated as a monophasic fluid (homogeneous model) and form with its vapor adiphasic pseudo fluid (two-fluid model). Furthermore, the interface is treated as a zone of mixture characterized by superficial void fraction noted α* . The aim of this article is to describe the dynamics of the interface between the boiled fluid and its vapor within a boiler. The resolution of the problem allowed us to show the evolution of the broth and the level of the liquid.Keywords: Two-fluid models, homogeneous model, interface, averaged equations, Jumps conditions, void fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520661 The Social Dynamics of Pandemics: A Clinical Sociological Analysis of Precautions and Risks
Authors: C. Ardil
Abstract:
The COVID-19 pandemic has revealed the complex and multifaceted relationship between societal structures and public health, emphasizing the need for a holistic approach to understanding pandemic responses. This study utilizes a clinical sociological perspective to analyze the social impacts of pandemics, with a particular focus on how social determinants such as income, education, race, and geographical location influence vulnerability and resilience. It explores the critical role of risk perception, communication strategies, and community dynamics in shaping public adherence to precautionary measures like mask-wearing, social distancing, and vaccination. By examining the ways in which social norms, structural inequalities, and trust in institutions affect public behavior, this study provides insights into the challenges of managing health crises in diverse communities. Comparative case studies and policy analysis are employed to highlight the variations in pandemic responses across different countries and regions, illustrating the importance of coordinated strategies and community-based interventions. The findings underscore that effective pandemic response requires addressing underlying social inequities, fostering community cohesion, and ensuring equitable access to healthcare and information. This study contributes to a deeper understanding of the broader societal implications of pandemics and offers recommendations for building more resilient, inclusive public health systems capable of mitigating the impact of future global health emergencies.
Keywords: Behavioral medicine, clinical sociology, community health, COVID-19, COVID-19 pandemic, epidemiology, infectious diseases, pandemics, precautions, psychology, public health, risks, social determinants, social dynamics, social psychiatry, social psychology, socioeconomic status, structural functionalism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31660 Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating
Authors: S. M. Azad, H. Ghodsipour, F. Roshannafas
Abstract:
In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors, such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’-which came from Technological IS literature- and using them into sectoral system as measurable indicators.
Keywords: Innovation system, technology, techno-sectoral system, functional indicators, system dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770659 Wind Interference Effect on Tall Building
Authors: Atul K. Desai, Jigar K. Sevalia, Sandip A. Vasanwala
Abstract:
When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used.
Keywords: Computational Fluid Dynamics, Tall Building, Turbulent, Wake Region, Wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801658 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor
Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi
Abstract:
The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.Keywords: PMSM, Electric Vehicle, Optimal control, Traction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767657 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform
Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee
Abstract:
It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.
Keywords: CFD, Coanda, Lift, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602656 Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil
Authors: Xie Kai, Laith K. Abbas, Chen Dongyang, Yang Fufeng, Rui Xiaoting
Abstract:
Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and k - ω shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle φ = 0, μ which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one.
Keywords: Dynamic stall, pitching-plunging, computational fluid dynamics, helicopter blade rotor, airfoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124655 Molecular Dynamic Simulation and Receptor-based Pharmacophore Modeling on Human Renin for Discovery of Novel Inhibitors
Authors: Chanin Park, Sundarapandian Thangapandian, Yuno Lee, Minky Son, Shalini John, Young-sik Sohn, Keun Woo Lee
Abstract:
Hypertension is characterized with stress on the heart and blood vessels thus increasing the risk of heart attack and renal diseases. The Renin angiotensin system (RAS) plays a major role in blood pressure control. Renin is the enzyme that controls the RAS at the rate-limiting step. Our aim is to develop new drug-like leads which can inhibit renin and thereby emerge as therapeutics for hypertension. To achieve this, molecular dynamics (MD) simulation and receptor-based pharmacophore modeling were implemented, and three rennin-inhibitor complex structures were selected based on IC50 value and scaffolds of inhibitors. Three pharmacophore models were generated considering conformations induced by inhibitor. The compounds mapped to these models were selected and subjected to drug-like screening. The identified hits were docked into the active site of renin. Finally, hit1 satisfying the binding mode and interaction energy was selected as possible lead candidate to be used in novel renin inhibitors.
Keywords: Renin inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968654 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics
Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid
Abstract:
Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.
Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876653 Real Time Data Communication with FlightGear Using Simulink over a UDP Protocol
Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique
Abstract:
Simulation and modelling of Unmanned Aerial Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade, as next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.
Keywords: aerospace, flight control, FlightGear, communication, Simulink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151652 Power Generation Potential of Dynamic Architecture
Authors: Ben Richard Hughes, Hassam Nasarullah Chaudhry
Abstract:
The main aim of this work is to establish the capabilities of new green buildings to ascertain off-grid electricity generation based on the integration of wind turbines in the conceptual model of a rotating tower [2] in Dubai. An in depth performance analysis of the WinWind 3.0MW [3] wind turbine is performed. Data based on the Dubai Meteorological Services is collected and analyzed in conjunction with the performance analysis of this wind turbine. The mathematical model is compared with Computational Fluid Dynamics (CFD) results based on a conceptual rotating tower design model. The comparison results are further validated and verified for accuracy by conducting experiments on a scaled prototype of the tower design. The study concluded that integrating wind turbines inside a rotating tower can generate enough electricity to meet the required power consumption of the building, which equates to a wind farm containing 9 horizontal axis wind turbines located at an approximate area of 3,237,485 m2 [14].Keywords: computational fluid dynamics, green building, horizontal axis wind turbine, rotating tower, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282651 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.
Keywords: Skid-steering, Trucksim-Simulink, feedforward control, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948650 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach
Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi
Abstract:
Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.
Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial information science. Remote sensing, surface elevation changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158649 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles
Authors: S. Levitsky
Abstract:
Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.Keywords: Sound propagation, gas bubbles, temperature effect, polymeric liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275648 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed
Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam
Abstract:
Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.
Keywords: Computational Fluid Dynamics (CFD) model, Waste Incineration, Municipal Solid Waste (MSW), Fixed Bed, Primary air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718647 A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect
Authors: Steady Mushayabasa
Abstract:
Typhoid fever is a communicable disease, found only in man and occurs due to systemic infection mainly by Salmonella typhi organism. The disease is endemic in many developing countries and remains a substantial public health problem despite recent progress in water and sanitation coverage. Globally, it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 deaths. A mathematical model for assessing the impact of educational campaigns on controlling the transmission dynamics of typhoid in the community, has been formulated and analyzed. The reproductive number has been computed. Stability of the model steady-states has been examined. The impact of educational campaigns on controlling the transmission dynamics of typhoid has been discussed through the basic reproductive number and numerical simulations. At its best the study suggests that targeted education campaigns, which are effective at stopping transmission of typhoid more than 40% of the time, will be highly effective at controlling the disease in the community.
Keywords: Mathematical model, Typhoid, saturated incidence rate, treatment, reproductive number, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517646 Aerodynamics and Optimization of Airfoil Under Ground Effect
Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim
Abstract:
The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231