Search results for: Learning performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7426

Search results for: Learning performance

7216 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khalid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: Acquisition, age, factors, language, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
7215 CSR of top Portuguese Companies: Relation between Social Performance and Economic Performance

Authors: Afonso, S. C., Fernandes, P. O., Monte, A. P.

Abstract:

Modern times call organizations to have an active role in the social arena, through Corporate Social Responsibility (CSR). The objective of this research was to test the hypothesis that there is a positive relation between social performance and economic performance, and if there is a positive correlation between social performance and financial-economic performance. To test these theories a measure of social performance, based on the Green Book of Commission of the European Community, was used in a group of nineteen Portuguese top companies, listed on the PSI 20 index, through a period of five years, since 2005 to 2009. A clusters analysis was applied to group companies by their social performance and to compare and correlate their economic performance. Results indicate that companies that had a better social performance are not the ones who had a better economic performance, and suggest that the middle path might provide a good relation CSR-Economic performance, as a basis to a sustainable development.

Keywords: Corporate Social Responsibility, Economic Performance, Win-Win relationship

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
7214 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
7213 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3561
7212 Distributed Relay Selection and Channel Choice in Cognitive Radio Network

Authors: Hao He, Shaoqian Li

Abstract:

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Keywords: cognitive radio, cooperative communication, relay selection, channel choice, regret-matching learning, correlated equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
7211 Building a Personalized Multidimensional Intelligent Learning System

Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen

Abstract:

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
7210 Performance Modeling for Web based J2EE and .NET Applications

Authors: Shankar Kambhampaty, Venkata Srinivas Modali

Abstract:

When architecting an application, key nonfunctional requirements such as performance, scalability, availability and security, which influence the architecture of the system, are some times not adequately addressed. Performance of the application may not be looked at until there is a concern. There are several problems with this reactive approach. If the system does not meet its performance objectives, the application is unlikely to be accepted by the stakeholders. This paper suggests an approach for performance modeling for web based J2EE and .Net applications to address performance issues early in the development life cycle. It also includes a Performance Modeling Case Study, with Proof-of-Concept (PoC) and implementation details for .NET and J2EE platforms.

Keywords: Performance Measures, Performance Modeling, Performance Testing, Resource Utilization, Response Time, Throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
7209 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature

Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger

Abstract:

This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.

Keywords: Critical success factors, e-learning, higher education, life-long learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3892
7208 Digital Learning Environments for Joint Master in Science Programmes in Building and Construction in Europe: Experimenting with Tools and Technologies

Authors: E. Dado, R. Beheshti

Abstract:

Recent developments in information and communication technologies (ICT) have created excellent conditions for profoundly enhancing the traditional learning and teaching practices. New modes of teaching in higher education subjects can profoundly enhance ones ability to proactively constructing his or her personal learning universe. These developments have contributed to digital learning environments becoming widely available and accessible. In addition, there is a trend towards enlargement and specialization in higher education in Europe. With as a result that existing Master of Science (MSc) programmes are merged or new programmes have been established that are offered as joint MSc programmes to students. In these joint MSc programmes, the need for (common) digital learning environments capable of surmounting the barriers of time and location has become evident. This paper discusses the past and ongoing efforts to establish such common digital learning environments in two joint MSc programmes in Europe and discusses the way technology-based learning environments affect the traditional way of learning.

Keywords: education, engineering, learning environments, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
7207 Investigating the Relation between Student Engagement and Attainment in a Flexible Learning Environment

Authors: Y. Bi, T. Anderson, M. Huang

Abstract:

The use of technology is increasingly adopted to support flexible learning in Higher Education institutions. The adoption of more sophisticated technologies offers a broad range of facilities for communication and resource sharing, thereby creating a flexible learning environment that facilitates and even encourages students not to physically attend classes. However this emerging trend seems to contradict class attendance requirements within universities, inevitably leading to a dilemma between amending traditional regulations and creating new policies for the higher education institutions. This study presents an investigation into student engagement in a technology enhanced/driven flexible environment along with its relationship to attainment. We propose an approach to modelling engagement from different perspectives in terms of indicators and then consider what impact these indicators have on student academic performance. We have carried out a case study on the relation between attendance and attainment in a flexible environment. Although our preliminary results show attendance is quantitatively correlated with successful student development and learning outcomes, our results also indicate there is a cohort that did not follow such a pattern. Nevertheless the preliminary results could provide an insight into pilot studies in the wider deployment of new technology to support flexible learning.

Keywords: Engagement, flexible leaning, attendance and attainment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
7206 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
7205 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

Authors: Eu Tteum Ha, Kwang Ryel Ryu

Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Keywords: Ensemble learning, activity recognition, smartphone accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
7204 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles

Authors: Stephen Akuma, Timothy Ndera

Abstract:

Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.

Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
7203 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
7202 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
7201 IDEL - A simple Instructional Design Tool for E-Learning

Authors: A. Zimnas, D. Kleftouris, N. Valkanos

Abstract:

Today-s Information and Knowledge Society has placed new demands on education and a new paradigm of education is required. Learning, facilitated by educational systems and the pedagogic process, is globally undergoing dramatic changes. The aim of this paper is the development of a simple Instructional Design tool for E-Learning, named IDEL (Instructional Design for Electronic Learning), that provides the educators with facilities to create their own courses with the essential educational material and manage communication with students. It offers flexibility in the way of learning and provides ease in employment and reusability of resources. IDEL is a web-based Instructional System and is designed to facilitate course design process in accordance with the ADDIE model and the instructional design principles with emphasis placed on the use of technology enhanced learning. An example case of using the ADDIE model to systematically develop a course and its implementation with the aid of IDEL is given and some results from student evaluation of the tool and the course are reported.

Keywords: Education, E-learning, Instructional Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
7200 Use of Visualization Techniques for Active Learning Engagement in Environmental Science Engineering Courses

Authors: Srinivasan Latha, M. R. Christhu Raj, Rajeev Sukumaran

Abstract:

Active learning strategies have completely rewritten the concept of teaching and learning. Academicians have clocked back to Socratic approaches of questioning. Educators have started implementing active learning strategies for effective learning with the help of tools and technology. As Generation-Y learners are mostly visual, engaging them using visualization techniques play a vital role in their learning process. The facilitator has an important role in intrinsically motivating the learners using different approaches to create self-learning interests. Different visualization techniques were used along with lectures to help students understand and appreciate the concepts. Anonymous feedback was collected from learners. The consolidated report shows that majority of learners accepted the usage of visualization techniques was helpful in understanding concepts as well as create interest in learning the course. This study helps to understand, how the use of visualization techniques help the facilitator to engage learners effectively as well create and intrinsic motivation for their learning.

Keywords: Visualization techniques, concept maps, mind maps, argument maps, flowchart, tree diagram, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
7199 The Overall Aspects of E-Leaning Issues, Developments, Opportunities and Challenges

Authors: Bala Dhandayuthapani Veerasamy

Abstract:

Rapid steps made in the field of Information and Communication Technology (ICT) has facilitated the development of teaching and learning methods and prepared them to serve the needs of an assorted educational institution. In other words, the information age has redefined the fundamentals and transformed the institutions and method of services delivery forever. The vision is the articulation of a desire to transform the method of teaching and learning could proceed through e-learning. E-learning is commonly deliberated to use of networked information and communications technology in teaching and learning practice. This paper deals the general aspects of the e-leaning with its issues, developments, opportunities and challenges, which can the higher institutions own.

Keywords: 2D & 3D Animations, challenges, E-learning, Flash, HTML, issues, Multimedia, opportunities, VRML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
7198 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569
7197 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
7196 Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits

Authors: Kafuko M. Maria, Namisango Fatuma, Byomire Gorretti

Abstract:

Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom learning from the learners’ perspective. The paper explicitly indicates the opportunities presented by enhanced learning to a conventional learning environment like a physical classroom. The findings were obtained through a survey of two universities in Uganda in which data was quantitatively collected, analyzed and presented in a three banded diagram depicting the variation in the obtainable benefits. Learners indicated that a smartphone is the most commonly used device. Learners also indicate that straight lectures, student to student plus student to lecturer communication, accessing learning material and assignments are core activities. In a TEL environment support by smartphones, learners indicated that they conveniently achieve the prior activities plus discussions and group work. Learners seemed not attracted to the possibility of using TEL environment to take lectures, as well as make class presentations. The less attractiveness of these two factors may be due to the teacher centered approach commonly applied in the country’s education system.

Keywords: Technology enhanced learning, mobile learning classroom learning, perceived benefits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
7195 Towards an AS Level Network Performance Model

Authors: Huan Xiong, Ming Chen

Abstract:

In order to research Internet quantificationally and better model the performance of network, this paper proposes a novel AS level network performance model (MNPM), it takes autonomous system (AS) as basic modeling unit, measures E2E performance between any two outdegrees of an AS and organizes measurement results into matrix form which called performance matrix (PM). Inter-AS performance calculation is defined according to performance information stored in PM. Simulation has been implemented to verify the correctness of MNPM and a practical application of MNPM (network congestion detection) is given.

Keywords: AS, network performance, model, metric, congestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
7194 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3520
7193 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
7192 A Development of Personalized Edutainment Contents through Storytelling

Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim

Abstract:

Recently, ‘play of learning’ becomes important and is  emphasized as a useful learning tool. Therefore, interest in  edutainment contents is growing. Storytelling is considered first as a  method that improves the transmission of information and learner's  interest when planning edutainment contents. In this study, we  designed edutainment contents in the form of an adventure game that  applies the storytelling method. This content provides questions and  items constituted dynamically and reorganized learning contents  through analysis of test results. It allows learners to solve various  questions through effective iterative learning. As a result, the learners  can reach mastery learning.

 

Keywords: Storytelling, edutainment, mastery learning, computer operating principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7191 Effect of Hybrid Learning in Higher Education

Authors: A. Meydanlioglu, F. Arikan

Abstract:

In recent years, thanks to the development of information and communication technologies, the computer and internet have been used widely in higher education. Internet-based education is impacting traditional higher education as online components increasingly become integrated into face- to- face (FTF) courses. The goal of combined internet-based and traditional education is to take full advantage of the benefits of each platform in order to provide an educational opportunity that can promote student learning better than can either platform alone. Research results show that the use of hybrid learning is more effective than online or FTF models in higher education. Due to the potential benefits, an increasing number of institutions are interested in developing hybrid courses, programs, and degrees. Future research should evaluate the effectiveness of hybrid learning. This paper is designed to determine the impact of hybrid learning on higher education.

Keywords: E-learning, higher education, hybrid learning, online education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8151
7190 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
7189 Academic Digital Library's Evaluation Criteria: User-Centered Approach

Authors: Razilan A. Kadir, Wan A. K. W. Dollah, Fatimah A. Saaid, S. Diljit

Abstract:

Academic digital libraries emerged as a result of advances in computing and information systems technologies, and had been introduced in universities and to public. As results, moving in parallel with current technology in learning and researching environment indeed offers myriad of advantages especially to students and academicians, as well as researchers. This is due to dramatic changes in learning environment through the use of digital library system which giving spectacular impact on these societies- way of performing their study/research. This paper presents a survey of current criteria for evaluating academic digital libraries- performance. The goal is to discuss criteria being applied so far for academic digital libraries evaluation in the context of user-centered design. Although this paper does not comprehensively take into account all previous researches in evaluating academic digital libraries but at least it can be a guide in understanding the evaluation criteria being widely applied.

Keywords: Academic digital libraries, evaluation criteria, performance, user-centered.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
7188 Benchmarking: Performance on ALPS and Formosa Clusters

Authors: Chih-Wei Hsieh, Chau-Yi Chou, Sheng-HsiuKuo, Tsung-Che Tsai, I-Chen Wu

Abstract:

This paper presents the benchmarking results and performance evaluation of differentclustersbuilt atthe National Center for High-Performance Computingin Taiwan. Performance of processor, memory subsystem andinterconnect is a critical factor in the overall performance of high performance computing platforms. The evaluation compares different system architecture and software platforms. Most supercomputer used HPL to benchmark their system performance, in accordance with the requirement of the TOP500 List. In this paper we consider system memory access factors that affect benchmark performance, such as processor and memory performance.We hope these works will provide useful information for future development and construct cluster system.

Keywords: Performance Evaluation, Benchmarking and High-Performance Computing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
7187 Harnessing the Opportunities of E-Learning and Education in Promoting Literacy in Nigeria

Authors: Victor Oluwaseyi Olowonisi

Abstract:

The paper aimed at presenting an overview on the concept of e-learning as it relates to higher education and how it provides opportunities for students, instructors and the government in developing the educational sector. It also touched on the benefits and challenges attached to e-learning as a new medium of reaching more students especially in the Nigerian context. The opportunities attributed to e-learning in the paper includes breaking boundaries barriers, reaching a larger number of students, provision of jobs for ICT experts, etc. In contrary, poor power supply, cost of implementation, poor computer literacy, technophobia (fear of technology), computer crime and system failure were some of the challenges of e-learning discussed in the paper. The paper proffered that the government can help the people gain more from e-learning through its financing. Also, it was stated that instructors/lecturers and students need to undergo training on computer application in order for e-learning to be more effective in developing higher education in Nigeria.

Keywords: E-Learning, education, higher education, increasing literacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203