Search results for: Interior Material
1835 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft
Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek
Abstract:
Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421834 Properties of Bacterial Nanocellulose for Scenic Arts
Abstract:
Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.
Keywords: Biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111833 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production
Authors: A. M. Jungudo, M. A. Lasan
Abstract:
Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.
Keywords: Laterite, stone dust, compressed earth bricks, durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5421832 3D-Printing Plates without “Support”
Authors: Yasusi Kanada
Abstract:
When printing a plate (or dish) by an FDM 3D printer, the process normally requires support material, which causes several problems. This paper proposes a method for forming thin plates without using wasteful support material. This method requires several extraordinary parameter values when slicing plates. The experiments show that the plates can, for the most part, be successfully formed using a conventional slicer and a 3D printer; however, seams between layers spoil them and the quality of printed objects strongly depends on the slicer.Keywords: Fused deposition modeling (FDM), 3D printing, Support-less, Layer seam, Slicer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19421831 Numerical Grid Generation of Oceanic Model for the Andaman Sea
Authors: Nitima Aschariyaphotha, Pratan Sakkaplangkul, Anirut Luadsong
Abstract:
The study of the Andaman Sea can be studied by using the oceanic model; therefore the grid covering the study area should be generated. This research aims to generate grid covering the Andaman Sea, situated between longitudes 90◦E to 101◦E and latitudes 1◦N to 18◦N. A horizontal grid is an orthogonal curvilinear with 87 × 217 grid points. The methods used in this study are cubic spline and bilinear interpolations. The boundary grid points are generated by spline interpolation while the interior grid points have to be specified by bilinear interpolation method. A vertical grid is sigma coordinate with 15 layers of water column.Keywords: Sigma Coordinate, Curvilinear Coordinate, AndamanSea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671830 Transient Thermal Stresses of Functionally Graded Thick Hollow Cylinder under the Green-Lindsay Model
Authors: Tariq T. Darabseh
Abstract:
The transient thermoelastic response of thick hollow cylinder made of functionally graded material under thermal loading is studied. The generalized coupled thermoelasticity based on the Green-Lindsay model is used. The thermal and mechanical properties of the functionally graded material are assumed to be varied in the radial direction according to a power law variation as a function of the volume fractions of the constituents. The thermal and elastic governing equations are solved by using Galerkin finite element method. All the finite element calculations were done by using commercial finite element program FlexPDE. The transient temperature, radial displacement, and thermal stresses distribution through the radial direction of the cylinder are plotted.
Keywords: Finite element method, thermal stresses, Green-Lindsay theory, functionally graded material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041829 Development of an Impregnated Diamond Bit with an Improved Rate of Penetration
Authors: Tim Dunne, Weicheng Li, Chris Cheng, Qi Peng
Abstract:
Deeper petroleum reservoirs are more challenging to exploit due to the high hardness and abrasive characteristics of the formations. A cutting structure that consists of particulate diamond impregnated in a supporting matrix is found to be effective. Diamond impregnated bits are favored in these applications due to the higher thermal stability of the matrix material. The diamond particles scour or abrade away concentric grooves while the rock formation adjacent to the grooves is fractured and removed. The matrix material supporting the diamond will wear away, leaving the superficial dull diamonds to fall out. The matrix material wear will expose other embedded intact sharp diamonds to continue the operation. Minimizing the erosion effect on the matrix is an important design consideration, as the life of the bit can be extended by preventing early diamond pull-out. A careful balancing of the key parameters, such as diamond concentration, tungsten carbide and metal binder must be considered during development. Described herein is the design of experiment for developing and lab testing 8 unique samples. ASTM B611 wear testing was performed to benchmark the material performance against baseline products, with further scanning electron microscopy and microhardness evaluations. The recipe S5 with diamond 25/35 mesh size, narrow size distribution, high concentration blended with fine tungsten carbide and Co-Cu-Fe-P metal binder has the best performance, which shows 19% improvement in the ASTM B611 wear test compared with the reference material. In the field trial, the rate of penetration (ROP) is measured as 15 m/h, compared to 9.5, 7.8, and 6.8 m/h of other commercial impregnated bits in the same formation. A second round of optimizing recipe S5 for a higher wear resistance is further reported.
Keywords: Diamond containing material, grit hot press insert, impregnated diamond, insert, rate of penetration, ultrahard formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3741828 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash
Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie
Abstract:
This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.
Keywords: Cementitious material, compressive strength, GGBS, HCFA, OPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10031827 Design and Development of Architectural Model Darul Ridzuan Museum
Authors: Jafreezal Jaafar, Hasiah Mohamed, Hazida Razali
Abstract:
This paper focuses on the 3D reconstruction of the architectural design of Darul Ridzuan Museum. It has concentrated on designing exterior part of the building according to colored digital photo of the real museum. Besides viewing the architecture, walkthroughs are generated for the user to control it in an easier way. User can travel through the museum to get the feel of the environment and to explore the design of the museum as a whole; both exterior and interior. The result has shown positive result in terms of realism, navigation, collision detection, suitability, usability and user-s acceptance. In brief, the 3D virtual museum has provided an alternative to present a real museum.Keywords: Virtual Heritage, 3D Modelling, Virtual Museum, Usability Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231826 Numerical Investigation on Latent Heat Storage Unit of Different Configurations
Authors: Manish K Rathod, Jyotirmay Banerjee
Abstract:
The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell.Keywords: Enthalpy Formulation, Latent heat storage unit(LHSU), Numerical Model, Phase change material (PCM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25151825 Theoretical Analysis of Damping Due to Air Viscosity in Narrow Acoustic Tubes
Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike
Abstract:
Headphones and earphones have many extremely small holes or narrow slits; they use sound-absorbing or porous material (i.e., dampers) to suppress vibratory system resonance. The air viscosity in these acoustic paths greatly affects the acoustic properties. Simulation analyses such as the finite element method (FEM) therefore require knowledge of the material properties of sound-absorbing or porous materials, such as the characteristic impedance and propagation constant. The transfer function method using acoustic tubes is a widely known measuring method, but there is no literature on taking measurements up to the audible range. To measure the acoustic properties at high-range frequencies, the acoustic tubes that form the measuring device need to be narrowed, and the distance between the two microphones needs to be reduced. However, when the tubes are narrowed, the characteristic impedance drops below the air impedance. In this study, we considered the effect of air viscosity in an acoustical tube, introduced a theoretical formula for this effect in the form of complex density and complex sonic velocity, and verified the theoretical formula. We also conducted an experiment and observed the effect from air viscosity in the actual measurements.Keywords: acoustic tube, air viscosity, earphones, FEM, porous material, sound-absorbing material, transfer function method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511824 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process
Authors: Djarot B. Darmadi
Abstract:
The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo- Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.Keywords: Residual stress, ferritic steels, SSPT, coupled-TMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801823 Extraction Condition of Echinocactus grusonii
Authors: R. Oonsivilai, N. Chaijareonudomroung, Y. Huantanom, A. Oonsivilai
Abstract:
The optimal extraction condition of dried Echinocactus grusonii powder was studied. The three independent variables are raw material drying temperature, extraction temperature, and extraction time. The dependent variables are both yield percentage of crude extract and total phenolic quantification as gallic acid equivalent in crude extract. The experimental design was based on central composite design. Highest yield percentage of crude extract could get from extraction condition at raw material drying temperature at 60°C, extraction temperature at 15°C, and extraction time for 25 min °C. Moreover, the crude extract with highest phenolic occurred by extraction condition of raw material drying temperature at 60°C, extraction temperature at 35 °C, and extraction lasting 25 min.Keywords: Drying temperature, Extraction temperature, Optimal condition, Total phenolic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21851822 Vibration Reduction Module with Flexure Springs for Personal Tools
Authors: Donghyun Hwang, Soo-Hun Lee, Moon G. Lee
Abstract:
In the various working field, vibration may cause injurious to human body. Especially, in case of the vibration which is constantly and repeatedly transferred to the human. That gives serious physical problem, so called, Reynaud phenomenon. In this paper, we propose a vibration transmissibility reduction module with flexure mechanism for personal tools. At first, we select a target personal tool, grass cutter, and measure the level of vibration transmissibility on the hand. And then, we develop the concept design of the module that has stiffness for reduction the vibration transmissibility more than 20%, where the vibration transmissibility is measured with an accelerometer. In addition, the vibration reduction can be enhanced when the interior gap between inner and outer body is filled with silicone gel. This will be verified by the further experiment.
Keywords: Flexure spring, tool engineering, vibration damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571821 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course
Authors: A. Dulaimi, H. Al Nageim, F. Ruddock, L. Seton
Abstract:
This study aims at developing a novel cold asphalt concrete binder course mixture by using Ordinary Portland Cement (OPC) as a replacement for conventional mineral filler (0%-100%) with new by-product material (LJMU-A2) used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was assessed by measuring the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance is achieved by adding LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to a stiffness modulus after 2-day curing compared to that obtained with Portland cement, which occurs after 7-day curing.Keywords: Binder course, cold mix asphalt, cement, stiffness modulus, water sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30921820 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12801819 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material
Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim
Abstract:
Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46601818 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material
Authors: G. Kim, R. Sterkenburg
Abstract:
One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.
Keywords: Debonding, environmental degradation, honeycomb sandwich structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6541817 Elastic-Plastic Analysis for Finite Deformation of a Rotating Disk Having Variable Thickness with Inclusion
Authors: Sanjeev Sharma, Manoj Sahni
Abstract:
Transition theory has been used to derive the elasticplastic and transitional stresses. Results obtained have been discussed numerically and depicted graphically. It is observed that the rotating disk made of incompressible material with inclusion require higher angular speed to yield at the internal surface as compared to disk made of compressible material. It is seen that the radial and circumferential stresses are maximum at the internal surface with and without edge load (for flat disk). With the increase in thickness parameter (k = 2, 4), the circumferential stress is maximum at the external surface while the radial stress is maximum at the internal surface. From the figures drawn the disk with exponentially varying thickness (k = 2), high angular speed is required for initial yielding at internal surface as compared to flat disk and exponentially varying thickness for k = 4 onwards. It is concluded that the disk made of isotropic compressible material is on the safer side of the design as compared to disk made of isotropic incompressible material as it requires higher percentage increase in an angular speed to become fully plastic from its initial yielding.Keywords: Finite deformation, Incompressibility, Transitionalstresses, Elastic-plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16741816 Study of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators
Authors: S. Thong-om, W. Payakcho, J. Grasasom, B. Marungsri
Abstract:
This paper presents the experimental results of salt fog ageing test of silicone rubber housing material for outdoor polymer insulator based on IEC 61109. Four types of HTV silicone rubber sheet with different amount of ATH were tested continuously 1000<=hours in salt fog chamber. By visual observation after tested, slightly surface erosion was observed on tested specimen surface near the energized end. Furthermore, increasing in hardness and reduction in hydrophobicity were measured on tested specimen comparing with new specimen. In addition, chemical analysis by ATRFTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen. Physical and chemical results confirmed the experimental results as well.
Keywords: Accelerated ageing test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20851815 Land Reclamation Using Waste as Fill Material: A Case Study in Jakarta
Authors: Q. Han, W. Schaefer, N. Barry
Abstract:
To coop with urbanization issues and the economic need for expansion, the city of Jakarta is planning to reclaim more land in the Jakarta Bay. However, the reclamation activities of some islands have barely started and already the developers are facing difficulties in finding sufficient quantities of sand as fill material. When addressing the problem of sand scarcity in the case of Jakarta where, an excess of waste production, an inadequate solid waste management system and a lack of dumping ground pose a major problem, it is hard not to think of the use of waste as alternative fill material. This paper analyses the possibilities of using waste in the land reclamation projects, considering the governmental, social, environmental and economic context of the city. The results identify types of waste that could be used, ways of using those types of waste and implementation conditions for the city of Jakarta.
Keywords: Waste Management systems, Land reclamation, Multi Criteria Analysis, Scenario planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53581814 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.
Keywords: Rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35841813 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam
Authors: Kalyan Kumar Mandal, Damodar Maity
Abstract:
The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18661812 Ingenious Use of Hypo Sludge in M25 Concrete
Authors: Abhinandan Singh Gill
Abstract:
Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.
Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12631811 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method
Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar
Abstract:
In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.
Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43171810 Free Vibration Analysis of Functionally Graded Pretwisted Plate in Thermal Environment Using Finite Element Method
Authors: S. Parida, S. C. Mohanty
Abstract:
The free vibration behavior of thick pretwisted cantilevered functionally graded material (FGM) plate subjected to the thermal environment is investigated numerically in the present paper. A mathematical model is developed in the framework of higher order shear deformation theory (HOST) with C0 finite element formulation i.e. independent displacement and rotations. The material properties are assumed to be temperature dependent and vary continuously through the thickness based on the volume fraction exponent in simple power rule. The finite element model has been discretized into eight node quadratic serendipity elements with node wise seven degrees of freedom. The effect of plate geometry, temperature field, material composition, and the modal analysis on the vibrational characteristics is examined. Finally, the results are verified by comparing with those available in literature.
Keywords: FGM, pretwisted plate, thermal environment, HOST, simple power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7861809 Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities
Authors: Juárez-Luna Gelacio, Ayala Gustavo, Retama-Velasco Jaime
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface.
To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.
Keywords: Variational formulation, strong discontinuity, embedded discontinuities, strain localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701808 MRI Compatible Fresnel Zone Plates made of Polylactic Acid
Authors: Daniel Tarrazó-Serrano, Sergio Pérez-López, Sergio Castiñeira-Ibáñez, Pilar Candelas, Constanza Rubio
Abstract:
Zone Plates (ZPs) are used in many areas of physics where planar fabrication is advantageous in comparison with conventional curved lenses. There are several types of ZPs, such as the well-known Fresnel ZPs or the more recent Fractal ZPs and Fibonacci ZPs. The material selection of the lens plays a very important role in the beam modulation control. This work presents a comparison between two Fresnel ZP made from different materials in the ultrasound domain: Polylactic Acid (PLA) and brass. PLA is the most common material used in commercial 3D-printers due to its high design flexibility and low cost. Numerical simulations based on Finite Element Method (FEM) and experimental results are shown, and they prove that the focusing capabilities of brass ZPs and PLA ZPs are similar. For this reason, PLA is proposed as a Magnetic Resonance Imaging (MRI) compatible material with great potential for therapeutic ultrasound focusing applications.Keywords: Fresnel zone plate, magnetic resonance imaging polylactic acid, ultrasound focusing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8161807 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil
Abstract:
This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.
Keywords: Soft soil stabilisation, waste materials, fineness, and unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26431806 Mesoporous Material Nanofibers by Electrospinning
Authors: Sh. Sohrabnezhad, A. Jafarzadeh
Abstract:
In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.Keywords: Electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820