**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30855

##### Elastic-Plastic Analysis for Finite Deformation of a Rotating Disk Having Variable Thickness with Inclusion

**Authors:**
SANJEEV SHARMA,
Manoj Sahni

**Abstract:**

**Keywords:**
elastic-plastic,
finite deformation,
Incompressibility,
Transitionalstresses

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1329967

**References:**

[1] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edi., New York: McGraw-Hill Book Coy., London, 1951.

[2] J. Chakrabarty, Applied Plasticity, Springer Verlag, Berlin, 2000.

[3] W. Han, B.D. Reddy, Plasticity, Mathematical Theory and Numerical Analysis, Springer Verlag, Berlin, 1999.

[4] R.B. Hetnarski, J. Ignaczak, Mathematical Theory of Elasticity, Taylor and Francis, 2003.

[5] I.S. Sokolinikoff, Mathematical Theory of Elasticity, 2nd Edi., New York: McGraw-Hill Book Co., 1950.

[6] J. Heyman, "Plastic design of rotating discs", Proc. Inst. Mech. Engs., 1958, pp. 531-546.

[7] R.P.S. Han, Yeh Kai-Yuan, "Analysis of High-Speed Rotating Disks with Variable Thickness and Inhomogenity", Transactions of the ASME, 61, pp. 186-191, 1994.

[8] A.N. Eraslan, Y.Orcan, "Elastic-plastic Deformation of a rotating solid disk of exponentially varying thickness", Mechanics of Materials, vol. 34, pp. 423-432, 2002.

[9] Xiu-e Wang, Xianjun Yin, "On Large Deformations of Elastic Half Rings", WSEAS Transactions on Applied and Theoretical Mechanics, vol. 2(1), pp. 24, 2007.

[10] B.R. Seth, "Transition Theory of Elastic-Plastic Deformation, Creep and Relaxation", NATURE, vol. 195, No. 4844, pp. 896-897, 1962.

[11] B. R. Seth, "Transition Analysis of Collapse of Thick-walled Cylinder", ZAMM, 50, pp. 617-621, 1970.

[12] B. R. Seth, "Creep Transition", Jr. Math. Phys. Sci., vol. 8, pp. 1-2, 1972.

[13] S. Hulsarkar, "Transition Theory of Creep Shells under Uniform Pressure", ZAMM, Vol. 46, pp. 431-437, 1966.

[14] S.K. Gupta, V.D. Rana, "Thermo Elastic-Plastic and Creep Transition in Rotating Cylinder", J. Math. Phy. Sci., 23(1), pp. 71-90, 1989.

[15] S.K. Gupta, Pankaj, "Thermo Elastic-plastic Transition in a thin rotating Disc with inclusion", Thermal Science Scientific Journal, 11(1), pp.103-118, 2007.

[16] B.N. Borah," Thermo Elastic-plastic transition", Contemporary Mathematics, vol. 379, pp. 93-111, 2005.

[17] S. Sharma, "Elastic-plastic Transition of Non-homogeneous Thick-walled Circular Cylinder under Internal Pressure", Def. Sc. Journal, vol. 54, No. 2, 2004.

[18] S. Sharma, M. Sahni, "Creep Transition of Transversely Isotropic Thick-walled Rotating Cylinder", Adv. Theor. Appl. Mech., vol. 1(7), pp. 315-325, 2008.

[19] Pankaj, Sonia R. Bansal, "Elastic-Plastic Transition in a Thin Rotating Disc with Inclusion", Proceedings of World Academy of Science, Engineering and Technology, Vol. 28, April 2008.

[20] U.Gu&&ven , "Elastic-plastic rotating disk with rigid inclusion", Mech. Struct. and Mach., vol. 27, pp. 117-128, 1999.