Search results for: Analysis modeling.
9907 A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning
Authors: Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, Mohamed Abid
Abstract:
Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.
Keywords: MDE, UML profile, scheduling analysis, HW/SW partitioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14369906 A Method to Saturation Modeling of Synchronous Machines in d-q Axes
Authors: Mohamed A. Khlifi, Badr M. Alshammari
Abstract:
This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.Keywords: Cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22519905 Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows
Authors: Yasuo Obikane
Abstract:
This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.Keywords: Turbulence Modeling , Density Gradient Correlation, Compressible
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14509904 Mathematical modeling of Bi-Substrate Enzymatic Reactions with Ping-Pong Mechanism in the Presence of Competitive Inhibitors
Authors: Rafayel A. Azizyan, Aram E. Gevogyan, Valeri B. Arakelyan, Emil S. Gevorgyan
Abstract:
The mathematical modeling of different biological processes is usually used to predict or assess behavior of systems in which these processes take place. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions with ping-pong mechanism, which play an important role in different biochemical pathways. Besides that, three models of competitive inhibition were designed using different software packages. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions with ordered pingpong mechanism in the presence of competitive inhibitors, as well as to describe in details the inhibition effects. The simulation of the models with certain kinetic parameters allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of competitive inhibition. Simultaneous presence of two inhibitors, competitive to the S1 and S2 substrates have been studied. Moreover, we have found the pattern of simultaneous influence of both inhibitors.Keywords: Mathematical modeling, bi-substrate enzymatic reactions, ping-pong mechanism, competitive inhibition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35989903 A Methodology for Creating a Conceptual Model Under Uncertainty
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes
Abstract:
This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.
Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15879902 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.
Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16639901 Towards Development of Solution for Business Process-Oriented Data Analysis
Authors: M. Klimavicius
Abstract:
This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.Keywords: Data warehouse, data analysis, business processmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13969900 Mathematical Modeling of Surface Roughness in Surface Grinding Operation
Authors: M.A. Kamely, S.M. Kamil, C.W. Chong
Abstract:
A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.Keywords: Mathematical Modeling, Response surfacemethodology, Surface roughness, Cylindrical Grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32579899 Dynamic Reroute Modeling for Emergency Evacuation: Case Study of Brunswick City, Germany
Authors: Yun-Pang Flötteröd, Jakob Erdmann
Abstract:
The human behaviors during evacuations are quite complex. One of the critical behaviors which affect the efficiency of evacuation is route choice. Therefore, the respective simulation modeling work needs to function properly. In this paper, Simulation of Urban Mobility’s (SUMO) current dynamic route modeling during evacuation, i.e. the rerouting functions, is examined with a real case study. The result consistency of the simulation and the reality is checked as well. Four influence factors (1) time to get information, (2) probability to cancel a trip, (3) probability to use navigation equipment, and (4) rerouting and information updating period are considered to analyze possible traffic impacts during the evacuation and to examine the rerouting functions in SUMO. Furthermore, some behavioral characters of the case study are analyzed with use of the corresponding detector data and applied in the simulation. The experiment results show that the dynamic route modeling in SUMO can deal with the proposed scenarios properly. Some issues and function needs related to route choice are discussed and further improvements are suggested.
Keywords: Evacuation, microscopic traffic simulation, rerouting, SUMO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11839898 Intelligent Modeling of the Electrical Activity of the Human Heart
Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos
Abstract:
The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18309897 Prospects, Problems of Marketing Research and Data Mining in Turkey
Authors: Sema Kurtuluş, Kemal Kurtuluş
Abstract:
The objective of this paper is to review and assess the methodological issues and problems in marketing research, data and knowledge mining in Turkey. As a summary, academic marketing research publications in Turkey have significant problems. The most vital problem seems to be related with modeling. Most of the publications had major weaknesses in modeling. There were also, serious problems regarding measurement and scaling, sampling and analyses. Analyses myopia seems to be the most important problem for young academia in Turkey. Another very important finding is the lack of publications on data and knowledge mining in the academic world.Keywords: Marketing research, data mining, knowledge mining, research modeling, analyses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19719896 Study of Flow Behavior of Aqueous Solution of Rhodamine B in Annular Reactor Using Computational Fluid Dynamics
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the flow behavior. CFD modeling was utilized to predict velocity distribution and average velocity in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting the flow characteristics in annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.
Keywords: Annular reactor, computational fluid dynamics (CFD), hydrodynamics, Rhodamine B
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19159895 The Integrated Studies of Infectious Disease Using Mathematical Modeling and Computer Simulation
Authors: R. Kongnuy, E. Naowanich
Abstract:
In this paper we develop and analyze the model for the spread of Leptospirosis by age group in Thailand, between 1997 and 2010 by using mathematical modeling and computer simulation. Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. It is a zoonotic disease of global importance and an emerging health problem in Thailand. In Thailand, leptospirosis is a reportable disease, the top three age groups are 23.31% in 35-44 years olds group, 22.76% in 25-34 year olds group, 17.60% in 45-54 year olds group from reported leptospirosis between 1997 and 2010, with a peak in 35-44 year olds group. Our paper, the Leptosipirosis transmission by age group in Thailand is studied on the mathematical model. Some analytical and simulation results are presented.Keywords: Age Group, Equilibrium State, Leptospirosis, Mathematical Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16379894 Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems
Authors: Sezen Yildirim, Tahir Çetin Akinci, Serhat Seker, Nazmi Ekren
Abstract:
Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.Keywords: Ferroresonance, West Anatolian Electric Power System, Power System Modeling, Switching, Spectral Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26949893 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling
Authors: Belkacem Chikhaoui, Helene Pigot
Abstract:
Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15339892 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
The study aims to explore the relationship between risk perception of rockfall and revisit intention using a Structural Equation Modeling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travelers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.
Keywords: Risk perception, rockfall, revisit intention, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21579891 Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC
Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa
Abstract:
This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).Keywords: SystemC, modeling, simulation, CSMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16629890 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.
Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11949889 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor
Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji
Abstract:
The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.
Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28239888 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures
Authors: Dong Wook Lee
Abstract:
This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.
Keywords: Computer Aided Engineering, CAE, Finite Element Analysis, FEA, impact analysis, penetration analysis, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6159887 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31439886 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems
Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu
Abstract:
Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22919885 3D Face Modeling based on 3D Dense Morphable Face Shape Model
Authors: Yongsuk Jang Kim, Sun-Tae Chung, Boogyun Kim, Seongwon Cho
Abstract:
Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, the proposed method extracts and matches facial landmarks from 2D image sequence containing a face to be modeled, and then reconstructs 3D vertices coordinates of the landmarks using a factorization-based SfM technique. Then, the proposed method obtains a 3D dense shape model of the face to be modeled by fitting the constructed 3D dense morphable shape model into the reconstructed 3D vertices. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method generates a 3D face model by rendering the 3D dense face shape model using the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise.Keywords: 3D Face Modeling, 3D Morphable Shape Model, 3DReconstruction, 3D Correspondence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24319884 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38039883 A Generic e-Tutor for Graphical Problems
Authors: B.W. Field
Abstract:
For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.
Keywords: CAL, graphics, modeling, structural distillation, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14199882 Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits
Authors: Saeed H. Nasiri, Rahim Faez, Bita Davoodi, Maryam Farrokhi
Abstract:
Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable.Keywords: Bode stability criterion, Interconnects, Interlayer via, Single wall carbon nanotubes, Transmission line method, Time domain analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18359881 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation
Authors: Rabia Korkmaz Tan, Şebnem Bora
Abstract:
The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.
Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12489880 CFD Modeling of High Temperature Seal Chamber
Authors: Mikhail P. Strongin, Ragupathi Soundararajan
Abstract:
The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.Keywords: CFD, heat transfer, seal chamber, high temperature water
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16809879 New Approach in Diagnostics Method for Milling Process using Envelope Analysis
Authors: C. Bisu, M. Zapciu, A. Gérard
Abstract:
This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.Keywords: diagnostics, envelope, milling, vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19389878 Effects of Stream Tube Numbers on Flow and Sediments using GSTARS-3-A Case Study of the Karkheh Reservoir Dam in Western Dezful
Authors: M. H. Ayazi, M. Qamari, N.Hedayat, A. Rohani
Abstract:
Simulation of the flow and sedimentation process in the reservoir dams can be made by two methods of physical and mathematical modeling. The study area was within a region which ranged from the Jelogir hydrometric station to the Karkheh reservoir dam aimed at investigating the effects of stream tubes on the GSTARS-3 model behavior. The methodologies was to run the model based on 5 stream tubes in order to observe the influence of each scenario on longitudinal profiles, cross-section, flow velocity and bed load sediment size. Results further suggest that the use of two stream tubes or more which result in the semi-two-dimensional model will yield relatively closer results to the observational data than a singular stream tube modeling. Moreover, the results of modeling with three stream tubes shown to yield a relatively close results with the observational data. The overall conclusion of the paper is with applying various stream tubes; it would be possible to yield a significant influence on the modeling behavior Vis-a Vis the bed load sediment size.Keywords: Karkheh, stream tubes, GSTARS-3 Model, Jelogir hydrometric station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601