
 

 

  
Abstract—In this paper we develop and analyze the model for 

the spread of Leptospirosis by age group in Thailand, between 1997 
and 2010 by using mathematical modeling and computer simulation.  
Leptospirosis is caused by pathogenic spirochetes of the genus 
Leptospira. It is a zoonotic disease of global importance and an 
emerging health problem in Thailand. In Thailand, leptospirosis is a 
reportable disease, the top three age groups are 23.31% in 35-44 
years olds group, 22.76% in 25-34 year olds group, 17.60% in 45-54 
year olds group from reported leptospirosis between 1997 and 2010, 
with a peak in 35-44 year olds group. Our paper, the Leptosipirosis 
transmission by age group in Thailand is studied on the mathematical 
model. Some analytical and simulation results are presented.  
 

Keywords—Age Group, Equilibrium State, Leptospirosis,  
Mathematical Modeling.  

I. INTRODUCTION 
HE mathematical modeling has become a valuable 
equipment in the analysis of the infectious disease 

dynamics. It can encouragement the development of the 
control plans. Leptospirosis is an infectious disease caused by 
a type of bacteria called a spirochete. Leptospirosis can be 
transmitted by many animals such as rats, opossums, 
raccoons, and foxes. It is transmitted though contact with 
infected soil or water. The soil or water is polluted with the 
waste products of an infected animal. Human get the disease 
by either ingesting contaminated food or water or by broken 
skin and mucous membrane catch with the infected water or 
soil.  

The symptoms of the disease can range from headaches and 
fever, to jaundice, severe myalgia and conjunctival suffusion 
[1-2], kidney failure, and internal bleeding. People who are 
seriously ill with leptospirosis often need to be hospitalized. 

For beginning the mathematical modeling to study the 
Leptospirosis transmission, in 2006 J. Holt and et al [3], they 
present a basic model for the dynamics of leptospirosis 
infection in a common African rodent, the multimammate  
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mouse. In 2007, W. Triampo and et al [4], they considered a 
deterministic model for the transmission of Leptospirosis 
which is spreading in Thai population. They using the 
Susceptible-Infectious-Recovered (SIR) model to described 
the transmission dynamics of the disease.                                            

Reported Leptospirosis case in Thailand between 1997 and 
2010 by age group are investigated by the Division of 
Epidemiology, Ministry of Public Health. The number of 
leptospirosis cases occurs peak in 35-44 year olds class (the 
average mean between 1997 and 2010). We model the spread 
of the leptospirosis in Thailand that there are ten age groups 
for infectious and recovered classes.  

Our study, the local dynamics of the three-dementional 
model of leptospirosis transmission model by ten age groups 
of Thai people is resolved through the use of the standard 
dynamic analysis the mathematical model. We use the real 
data from the Division of Epidemiology, Ministry of Public 
Health to analysis with our model. The purpose of this paper 
is to use the mathematical model to study the behavior of the 
transmission of leptospirosis by ten age groups in Thai people 
for understanding and controlling the leptospirosis 
transmission in Thai population. We prove the local 
asymptotic stability of the equilibrium states. Our discussion 
and conclusion are contained in the last section.  

II.  THE MODEL 

A. A Model  
A model for Leptospirosis transmission in Thailand by ten 

age groups. We divide the age group into ten age groups by 
using real data from Division of Epidemiology, Ministry of 
Public Health. We denote the fractions of the susceptible 
human individuals, the infectious human individuals that 
belong to ten different subclasses by age group and the 
recovered human individuals in the population by HS (t) , 

HiI (t) , HiR (t) , respectively, that is, 
 

10 10

H Hi Hi
i 1 i 1

S (t) I (t) R (t) 1
= =

+ + =∑ ∑  where  

 
i 1= , it means the class of age group which less than or equal 
6 year olds, 
i 2= , it means the class of age group 7-9 year olds, 
i 3= , it means the class of age group 10-14 year olds, 
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i 4= , it means the class of age group 15-24 year olds, 
i 5= , it means the class of age group 25-34 year olds, 
i 6= , it means the class of age group 35-44 year olds, 
i 7= , it means the class of age group 45-54 year olds, 
i 8= , it means the class of age group 55-64 year olds, 
i 9= , it means the class of age group which more than or 
equal 65 year olds  and 
i 10= , it means the unknown age group from reported. 

We focus on the contagion of leptospirosis transmission is 
rats by dividing the rats group into two groups. We denote the 
fractions of the susceptible rats individuals and the infectious 
rats individuals in the rats population by MS (t)  and  MI (t)  

that is , M MS (t) I (t) 1+ = . 
Then our diagram for human populations and rats 

populations are human populations:  

 
the rates populations: 
 
 
 
 
 
 
 
 
 
when iβ  is the transmission probability of leptospirosis from 
infected rat to human population in each i age group, the 
transmission of the leptospirosis  infection in each age group 
in human populations governed by i H MS Iβ , θ is the 
transmission probability of leptospirosis to rat population and 
the leptospirosis infection in rat populations governed by 

M MS Iθ , then the corresponding equations our model in 
human populations are:  
 

10
H

H i H M
i 1

dS S S I
dt =

= λ − μ − β∑ ,         (1) 

10 10
Hi

i H M Hi Hi
i 1 i 1

dI S I ( )I
dt = =

= β − α + μ + δ∑ ∑ ,        (2) 

 
10 10

Hi
Hi Hi

i 1 i 1

dR I R
dt = =

= δ − μ∑ ∑ ,                                     (3) 

 
when  i 1, 2,...,10=   and λ  is recruitment rate into the 
susceptible human class, μ  is the per capita natural mortality 

rate of human population, δ  is the recovery rate, Hiα  is the 
per capita death rate in each age group. Then (3) for the 
recovered class can be exempted. The most common reason 
for these assumptions is when the population size is constant 
or when the variation of the population is either negligibly 
small or slow compared to the time scale of the epidemic 
process.   

The corresponding equations are: 
 

10
H

H i H M
i 1

dS S S I
dt =

= λ − μ − β∑ ,           (4) 

 
10 10

Hi
i H M Hi Hi

i 1 i 1

dI S I ( )I
dt = =

= β − α + μ + δ∑ ∑ .     (5) 

 
In rats populations are:  

 

M
M M M

dS S S I
dt

= ω − Ω − θ ,              (6) 

 

M
M M M

dI S I I
dt

= θ − Ω ,               (7) 

 
when ω  is recruitment rate into the susceptible rats class, Ω  
is the per capita natural mortality rate of rats population, Then 
(6) for the susceptible rats class can be exempted. The 
corresponding equations for rat populations are:  
 

M
M M M

dI (1 I )I I
dt

= θ − − Ω .                (8) 

 

B. Properties of the Models 
Next, we will show (4), (5) and (8) has an infection 

equilibrium state. Let the right hand side of (4), (5) and (8) to 
zero and then we obtain: 

 
10

* * *
H i H M

i 1
S S I 0

=

λ − μ − β =∑ ,             (9) 

 

                                        H1 H1 H1I Iα + μ  

                            H1I         H1Iδ         H1R        H1Rμ  
      1 H MS Iβ            .                                              
 λ                         . 
                             . 

HS       i H MS Iβ      HiI         HiIδ           HiR       HiRμ  
   HSμ                   .         Hi Hi HiI Iα + μ  
                            . 
                            . 
       10 H MS Iβ         H10I        H10Iδ         H10R      H10Rμ  
                                        H10 H10 H10I Iα + μ  

 
                      ω                      
                                M MS Iθ  

                   MS                             MI  
 
                       MSΩ                 MIΩ  
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10 10
* * *

i H M Hi Hi
i 1 i 1

S I ( )I 0
= =

β − α + μ + δ =∑ ∑             (10) 

 
* * *
M M M(1 I )I I 0θ − − Ω = .                        (11) 

 
From (9), we have:   

 

*
H 10

*
M i

i 1

S
I

=

λ
=

μ + β∑
.                               (12) 

 
Substituting (12) into (10), then we obtain: 

 

 
*

* i M
Hi 10

*
M i Hi

i 1

II
( I )( )

=

λβ
=

μ + β α + μ + δ∑
.        (13) 

 
From (11), we have two solutions, the first one solution is  

*
MI 0=  and the second solution is:  

  

                        *
MI 1 Ω

= −
θ

.              (14) 

 
From our calculate, we have two equilibrium states, the first 

is the disease-free equilibrium state 0 H0 H0i M0E (S , I , I )= =  

( ,0,0)λ
μ

. The second equilibrium state is the endemic 

equilibrium state: 
 

* * *
1 H Hi ME (S , I , I )=      

     *
i M

10 10
* *
M i M j Hi

i 1 j 1

I( , ,1 )
( I ) ( I )( )

= =

λβλ Ω
= −

θμ + β μ + β α + μ + δ∑ ∑
.     (15) 

 
If the endemic equilibrium state exists and is stable, then the 
infection will persist endemically at this state. If the disease-
free equilibrium state occurs and is stable, then the population 
can remain disease-free indefinitely.  

III. MODAL ANALYSIS 

A.  Analytical Results  
From our model and analytic, the equilibrium solutions we 

have two equilibrium sates: 

i)  0E ( ,0,0)λ
=

μ
 is the disease free equilibrium state  and 

ii) * * *
1 H Hi ME (S , I , I )=  is the endemic disease equilibrium 

state where  * * *
H Hi MS , I , I  are defined  in (12),(3) and (14), 

respectively. 
Let: 

10
* * *

H H i H M
i 1

X S S I
=

= λ − μ − β∑ ,       (16) 

 
10 10

* * *
i i H M Hi Hi

i 1 i 1
X S I ( )I

= =

= β − α + μ + δ∑ ∑ ,    (17) 

 
* * *

M M M MY (1 I )I I= θ − − Ω              (18) 
 
then we have: 
 

10
*H
M i*

i 1H

X I
S =

∂
= −μ − β

∂ ∑ , H
*
Hi

X 0
I

∂
=

∂
, 

10
*H
H j*

j 1M

X S
I =

∂
= − β

∂ ∑ , 

*i
i M*

H

X I
S

∂
= β

∂
, i

Hi*
Hi

X ( )
I

∂
= − α + μ + δ

∂
, i

*
Hj, j i

X 0
I ≠

∂
=

∂
, 

*i
i H*

M

X S
I

∂
= β

∂
 and *M

M*
M

Y 2 I
I

∂
= θ − θ − Ω

∂
   

for i, j =1,2,…,10.  
 
The Jacobian matrix is 12 12×  matrix: 
 

10 10
* *
M i H j

i 1 j 1

* *
1 M H1 1 H

* *
2 M H2 2 H

* *
H1010 M 10 H

*
M

I 0 0 ... S

I ( ) 0 ... S
I 0 ( ) 0 S

. ...

. ...
0

. ...
( ).I S

0 0 0 ... 2 I

= =

⎡ ⎤
−μ − β − β⎢ ⎥

⎢ ⎥
⎢ ⎥β − α + μ + δ β
⎢ ⎥

β − α + μ + δ β⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− α + μ + δβ β⎢ ⎥
⎢ ⎥θ − θ − Ω⎢ ⎥⎣ ⎦

∑ ∑

.       (19) 

 

B. The Local Stability  
To determine the local stability of two equilibrium sates, we 

calculate from the Jacobian matrix. If all eigenvalues which 
can be obtained by diagonalizing the Jacobian matrix have 
negative real parts then the equilibrium solution is local 
stability. Diagonalizing the Jacobian for the equilibrium states, 
the characteristic equation is given by setting: 
 

                          det 12(J I ) 0− η =                           (20) 
 
where J is the Jacobian matrix for the equilibrium states, η  is 

the eigenvalue and 12I  is the identity matrix. At the disease 

free equilibrium state 0E ( ,0,0)λ
=

μ
, thus we have: 

1η = −μ , 2 H1( )η = − α + μ + δ , 3 H2( )η = − α + μ + δ , 
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4 H3( )η = − α + μ + δ , 5 H4( )η = − α + μ + δ , 

6 H5( )η = − α + μ + δ , 7 H6( )η = − α + μ + δ , 

8 H7( )η = − α + μ + δ , 9 H8( )η = − α + μ + δ , 

10 H9( )η = − α + μ + δ . For the other two eigenvalues are 
obtained by solving:  
 

2
1 0a a 0η + η + =         (21) 

 
when   
 

1 H10a ( ) ( )= −θ + Ω + δ + μ + α ,       (22) 
 

0 H10a ( )( )= −θ + Ω δ + μ + α .             (23) 
 

So 
2

1 1 0
11

a a 4a
2

− − −
η =  and 

2
1 1 0

12

a a 4a
2

− + −
η = .  

 
It can be seen easily 11η  is always negative. Next we consider 

2 2
1 0 H10a 4a (( ) ( ))− = −θ + Ω − δ + μ + α  is always 

positive. Then we consider 12η  is negative when 0a 0≥  or 

1θ
≤

Ω
. 

For checking the local stability of the endemic equilibrium 
state at * * *

1 H Hi ME (S , I , I )= , we use the same method of the 
disease free equilibrium state. Then we obtain ten eigenvalues 
are 1 H1( )η = − α + μ + δ , 2 H2( )η = − α + μ + δ , 

3 H3( )η = − α + μ + δ , 4 H4( )η = − α + μ + δ , 

5 H5( )η = − α + μ + δ , 6 H6( )η = − α + μ + δ , 

7 H7( )η = − α + μ + δ , 8 H8( )η = − α + μ + δ ,

9 H9( )η = − α + μ + δ , 10 H10( )η = − α + μ + δ .  
The remaining two eigenvalues are obtained by solving  
 

2
1 0b b 0η + η + =                 (24) 

where 
10

0 M i
i 1

b ( )( I )
=

= Ω − θ μ + β∑ ,     (25) 

10

1 M i
i 1

b ( ) I
=

= μ + Ω − θ + β∑ .     (26) 

We have  
2

1 1 0
11

b b 4b
2

− − −
η =  and 

2
1 1 0

12

b b 4b
2

− + −
η = .  

So 11η  is always negative. Next we consider 

10
2 * 2
1 0 M i

i 1
b 4b (( )I )

=

− = μ − Ω + θ β∑  is always positive. 

Then we consider 12η  is negative when 0b 0< .  

IV. NUMERICAL RESULTS 
Numerical solutions are shown to compare the leptospirosis 

transmission by ten age groups in Thailand. The values of the 
parameters used are corresponding to real data from the 
Division of Epidemiology, Ministry of Public Health between 
1997 and 2010 which are shown in Table I. 

 
TABLE I 

PARAMETERS VALUES USED IN THE SIMULATIONS 

Symbol Parameter Value for Fig. 1. Value for Fig. 2. 

λ  The recruitment rate 
into the susceptible 
human class 

 

1/(365 70)× per 

day 

1/(365 70)×  per 

day 
μ The per capita natural 

mortality rate of human 
population 

 

1/(365 70)×  per 

day 

 

1/(365 70)×  per 

day 

iβ  The transmission 
probability of 
leptospirosis from 
infected rat to human 
population in each age 
group 

1 0.0095β = ,

2 0.0123β = ,

3 0.0425β = ,

4 0.1410β = ,

5 0.2276β = ,

6 0.2331β = ,

7 0.1760β = ,

8 0.1029β = ,

9 0.0550β = ,

10 0.0004β =  
 

1 0.0095β = ,

2 0.0123β = ,

3 0.0425β = ,

4 0.1410β = ,

50 1≤ β ≤ ,

6 0.2331β = ,

7 0.1760β = ,

8 0.1029β = ,

9 0.0550β = ,

10 0.0004β =  

Hiα  The per capita death rate 
from infected  

H1 H2 ,...α = α

H10 0.0222= α =  
 

H1 H2 ,...α = α

H10 0.0222= α =  

δ  The recovery rate of 
human population 

 

1/15  per day 

 

1/15  per day 

 
Ω  The per capita natural 

mortality rate of rats 
population 

 

1/(365 1.5)×  per 

day 

1/(365 1.5)×  per 

day 
θ  The transmission 

probability of 
leptospirosis to rat 
population 

 
0 1≤ θ ≤  
0,0.1,0.2,…,1 

 
0.2 
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Fig. 1 Bifurcation diagrams of the solutions (4), (5) and (8) for different values of θ . The value of parameters in the model are shown in 
Table I 
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Fig. 2 Bifurcation diagrams of the solutions (4), (5) and (8) for different values of 5β . The value of parameters in the model are shown in 
Table I 
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V.  CONCLUSION 
In this paper, we consider the local properties of the 

mathematical model of the leptospirosis transmission in 
Thailand by incorporate ten age groups in our model. Because 
of Thailand is an agricultural country. The main occupation of 
Thai population is the farmers. Then the epidemic of 
leptospirosis disease in Thai population corresponding the 
occupations and the ages of the populations. An important 
development in the study of the leptospirosis diseases has 
used the application of the mathematical model to understand 
the interplay between the factors, the hosts and the 
transmission dynamics. The highest incidence was found in 
35-44 age group.     

In Fig. 1, all parameters proportions approach to the 
equilibrium state when the transmission probability of 
leptospirosis to rat population ( θ ) are difference ( 0 1≤ θ ≤ ). 
It almost no effect to the proportion of parameters. But the 
transmission probability of leptospirosis from infected rat to 
human population in the second peak reported cases in 
Thailand (in 25-34 years olds group ( 5β )) are difference. It 

has an impact to the proportions of all parameters. When 5β  
is higher, we can see the infectious human proportion in 25-34 
year olds class increase. The infectious rat proportions are 
constant while the other parameters proportions decrease 
which are shown in Fig. 2.  

After that, we try to check the changes of transmission 
probability in human populations in each age class. We found 
that the results as same as Fig. 2. So the control of 
leptospirosis transmission in Thailand will be successful when 
the transmission probability of leptospirosis from infected rat 
to human in each age group decrease.  
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