Search results for: continuous time domain estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8369

Search results for: continuous time domain estimation

6029 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: Frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
6028 Experimental Estimation of Mixed-Mode Fracture Properties of Steel Weld

Authors: S. R. Hosseini, N. Choupani, A. R. M. Gharabaghi

Abstract:

The modified Arcan fixture was used in order to investigate the mixed mode fracture properties of high strength steel butt weld through experimental and numerical analysis. The fixture consisted of a central section with "butterfly-shaped" specimen that had central crack. The specimens were under pure mode I (opening), pure mode II (shearing) and all in plane mixed mode loading angles starting from 0 to 90 degrees. The geometric calibration factors were calculated with the aid of finite element analysis for various loading mode and different crack length (0.45≤ a/w ≤0.55) and the critical fracture loads obtained experimentally. The critical fracture toughness (KIC & KIIC) estimated with experimental and numerical analysis under mixed mode loading conditions.

Keywords: Arcan specimen, fracture toughness, mixed mode, steel weld.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
6027 Specialized Translation Teaching Strategies: A Corpus-Based Approach

Authors: Yingying Ding

Abstract:

This study presents a methodology of specialized translation with the objective of helping teachers to improve the strategies in teaching translation. In order to allow students to acquire skills to translate specialized texts, they need to become familiar with the semantic and syntactic features of source texts and target texts. The aim of our study is to use a corpus-based approach in the teaching of specialized translation between Chinese and Italian. This study proposes to construct a specialized Chinese - Italian comparable corpus that consists of 50 economic contracts from the domain of food. With the help of AntConc, we propose to compile a comparable corpus in for translation teaching purposes. This paper attempts to provide insight into how teachers could benefit from comparable corpus in the teaching of specialized translation from Italian into Chinese and through some examples of passive sentences how students could learn to apply different strategies for translating appropriately the voice.

Keywords: Corpus-based approach, translation teaching, specialized translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
6026 The Mutated Distance between Two Mixture Trees

Authors: Wan Chian Li, Justie Su-Tzu Juan, Yi-Chun Wang, Shu-Chuan Chen

Abstract:

The evolutionary tree is an important topic in bioinformation. In 2006, Chen and Lindsay proposed a new method to build the mixture tree from DNA sequences. Mixture tree is a new type evolutionary tree, and it has two additional information besides the information of ordinary evolutionary tree. One of the information is time parameter, and the other is the set of mutated sites. In 2008, Lin and Juan proposed an algorithm to compute the distance between two mixture trees. Their algorithm computes the distance with only considering the time parameter between two mixture trees. In this paper, we proposes a method to measure the similarity of two mixture trees with considering the set of mutated sites and develops two algorithm to compute the distance between two mixture trees. The time complexity of these two proposed algorithms are O(n2 × max{h(T1), h(T2)}) and O(n2), respectively

Keywords: evolutionary tree, mixture tree, mutated site, distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
6025 Performance Analysis of Flooding Attack Prevention Algorithm in MANETs

Authors: Revathi Venkataraman, M. Pushpalatha, T. Rama Rao

Abstract:

The lack of any centralized infrastructure in mobile ad hoc networks (MANET) is one of the greatest security concerns in the deployment of wireless networks. Thus communication in MANET functions properly only if the participating nodes cooperate in routing without any malicious intention. However, some of the nodes may be malicious in their behavior, by indulging in flooding attacks on their neighbors. Some others may act malicious by launching active security attacks like denial of service. This paper addresses few related works done on trust evaluation and establishment in ad hoc networks. Related works on flooding attack prevention are reviewed. A new trust approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate and prevent flooding attacks in an ad hoc environment. The performance of the trust algorithm is tested in an ad hoc network implementing the Ad hoc On-demand Distance Vector (AODV) protocol.

Keywords: AODV, Flooding, MANETs, trust estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
6024 Instrumentation for Studying Real-time Popcorn Effect in Surface Mount Packages during Solder Reflow

Authors: Arijit Roy

Abstract:

Occurrence of popcorn in IC packages while assembling them onto the PCB is a well known moisture sensitive reliability issues, especially for surface mount packages. Commonly reflow soldering simulation process is conducted to assess the impact of assembling IC package onto PCB. A strain gauge-based instrumentation is developed to investigate the popcorn effect in surface mount packages during reflow soldering process. The instrument is capable of providing real-time quantitative information of the occurrence popcorn phenomenon in IC packages. It is found that the popcorn occur temperatures between 218 to 241°C depending on moisture soak condition, but not at the peak temperature of the reflow process. The presence of popcorn and delamination are further confirmed by scanning acoustic tomography as a failure analysis.

Keywords: Instrumentation, Popcorn, Real-time, Solder Reflow, Strain Gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
6023 A Genetic Algorithm for Clustering on Image Data

Authors: Qin Ding, Jim Gasvoda

Abstract:

Clustering is the process of subdividing an input data set into a desired number of subgroups so that members of the same subgroup are similar and members of different subgroups have diverse properties. Many heuristic algorithms have been applied to the clustering problem, which is known to be NP Hard. Genetic algorithms have been used in a wide variety of fields to perform clustering, however, the technique normally has a long running time in terms of input set size. This paper proposes an efficient genetic algorithm for clustering on very large data sets, especially on image data sets. The genetic algorithm uses the most time efficient techniques along with preprocessing of the input data set. We test our algorithm on both artificial and real image data sets, both of which are of large size. The experimental results show that our algorithm outperforms the k-means algorithm in terms of running time as well as the quality of the clustering.

Keywords: Clustering, data mining, genetic algorithm, image data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
6022 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
6021 Selective Encryption using ISMA Cryp in Real Time Video Streaming of H.264/AVC for DVB-H Application

Authors: Jay M. Joshi, Upena D. Dalal

Abstract:

Multimedia information availability has increased dramatically with the advent of video broadcasting on handheld devices. But with this availability comes problems of maintaining the security of information that is displayed in public. ISMA Encryption and Authentication (ISMACryp) is one of the chosen technologies for service protection in DVB-H (Digital Video Broadcasting- Handheld), the TV system for portable handheld devices. The ISMACryp is encoded with H.264/AVC (advanced video coding), while leaving all structural data as it is. Two modes of ISMACryp are available; the CTR mode (Counter type) and CBC mode (Cipher Block Chaining) mode. Both modes of ISMACryp are based on 128- bit AES algorithm. AES algorithms are more complex and require larger time for execution which is not suitable for real time application like live TV. The proposed system aims to gain a deep understanding of video data security on multimedia technologies and to provide security for real time video applications using selective encryption for H.264/AVC. Five level of security proposed in this paper based on the content of NAL unit in Baseline Constrain profile of H.264/AVC. The selective encryption in different levels provides encryption of intra-prediction mode, residue data, inter-prediction mode or motion vectors only. Experimental results shown in this paper described that fifth level which is ISMACryp provide higher level of security with more encryption time and the one level provide lower level of security by encrypting only motion vectors with lower execution time without compromise on compression and quality of visual content. This encryption scheme with compression process with low cost, and keeps the file format unchanged with some direct operations supported. Simulation was being carried out in Matlab.

Keywords: AES-128, CAVLC, H.264, ISMACryp

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
6020 Exchanges of Knowledge about Product Configurations using XML Topic Map

Authors: Namchul Do, Jihun Cho

Abstract:

Modeling product configurations needs large amounts of knowledge about technical and marketing restrictions on the product. Previous attempts to automate product configurations concentrate on representations and management of the knowledge for specific domains in fixed and isolated computing environments. Since the knowledge about product configurations is subject to continuous change and hard to express, these attempts often failed to efficiently manage and exchange the knowledge in collaborative product development. In this paper, XML Topic Map (XTM) is introduced to represent and exchange the knowledge about product configurations in collaborative product development. A product configuration model based on XTM along with its merger and inference facilities enables configuration engineers in collaborative product development to manage and exchange their knowledge efficiently. A prototype implementation is also presented to demonstrate the proposed model can be applied to engineering information systems to exchange the product configuration knowledge.

Keywords: Knowledge exchange, product configurations, XML topic map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
6019 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.

Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3547
6018 Policy Management Framework for Managing Enterprise Policies

Authors: Dahir A. Ga'al, Wardah Zainal Abidin

Abstract:

Policy management in organizations became rising issue in the last decade. It’s because of today’s regulatory requirements in the organizations. To manage policies in large organizations is an imperative work. However, major challenges facing organizations in the last decade is managing all the policies in the organization and making them an active documents rather than simple (inactive) documents stored in computer hard drive or on a shelf. Because of this challenge, organizations need policy management program. This policy management program can be either manual or automated. This paper presents suggestions towards managing policies in organizations. As well as possible policy management solution or program to be utilized, manual or automated. The research first examines the models and frameworks used for managing policies from various perspectives in the literature of the research area/domain. At the end of this paper, a policy management framework is proposed for managing enterprise policies effectively and in a simplified manner.

Keywords: Policy, policy management, policy management program, policy repository.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626
6017 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus

Abstract:

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3989
6016 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features

Authors: Steven Whittle, Ingrida Valiusaityte

Abstract:

Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.

Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
6015 Analytical Crack Propagation Scenario for Gear Teeth and Time-Varying Gear Mesh Stiffness

Authors: Omar D. Mohammed, Matti Rantatalo, Uday Kumar

Abstract:

In this paper an analytical crack propagation scenario is proposed which assumes that a crack propagates in the tooth root in both the crack depth direction and the tooth width direction, and which is more reasonable and realistic for non-uniform load distribution cases than the other presented scenarios. An analytical approach is used for quantifying the loss of time-varying gear mesh stiffness with the presence of crack propagation in the gear tooth root. The proposed crack propagation scenario can be applied for crack propagation modelling and monitoring simulation, but further research is required for comparison and evaluation of all the presented crack propagation scenarios from the condition monitoring point of view.

Keywords: Crack propagation, Gear tooth crack, Time varying gear mesh stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
6014 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez

Abstract:

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Keywords: Feature Selection Stability, Spectral data, Data visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6013 A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models

Authors: Dursun Aydın

Abstract:

In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example.

Keywords: Partial Linear Regression Model, Linear RegressionModel, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
6012 Using Pattern Search Methods for Minimizing Clustering Problems

Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar

Abstract:

Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.

Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
6011 Evaluation of Protocol Applied to Network Routing WCETT Cognitive Radio

Authors: Nancy Yaneth Gelvez García, Danilo Alfonso López Sarmiento

Abstract:

This article presents the results of researchrelated to the assessment protocol weightedcumulative expected transmission time (WCETT)applied to cognitive radio networks.The development work was based on researchdone by different authors, we simulated a network,which communicates wirelessly, using a licensedchannel, through which other nodes are notlicensed, try to transmit during a given time nodeuntil the station's owner begins its transmission.

Keywords: Cognitive radio, ETT, WCETT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
6010 Ultrasonic Echo Image Adaptive Watermarking Using the Just-Noticeable Difference Estimation

Authors: Amnach Khawne, Kazuhiko Hamamoto, Orachat Chitsobhuk

Abstract:

Most of the image watermarking methods, using the properties of the human visual system (HVS), have been proposed in literature. The component of the visual threshold is usually related to either the spatial contrast sensitivity function (CSF) or the visual masking. Especially on the contrast masking, most methods have not mention to the effect near to the edge region. Since the HVS is sensitive what happens on the edge area. This paper proposes ultrasound image watermarking using the visual threshold corresponding to the HVS in which the coefficients in a DCT-block have been classified based on the texture, edge, and plain area. This classification method enables not only useful for imperceptibility when the watermark is insert into an image but also achievable a robustness of watermark detection. A comparison of the proposed method with other methods has been carried out which shown that the proposed method robusts to blockwise memoryless manipulations, and also robust against noise addition.

Keywords: Medical image watermarking, Human Visual System, Image Adaptive Watermark

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
6009 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses

Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh

Abstract:

Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.

Keywords: Jumbo container crane, portal drift, time history analysis, total base shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
6008 Robust Stability Criteria for Uncertain Genetic Regulatory Networks with Time-Varying Delays

Authors: Wenqin Wang, Shouming Zhong

Abstract:

This paper presents the robust stability criteria for uncertain genetic regulatory networks with time-varying delays. One key point of the criterion is that the decomposition of the matrix ˜D into ˜D = ˜D1 + ˜D2. This decomposition corresponds to a decomposition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique enables one to take the stabilizing effect of part of the delayed terms into account. Meanwhile, by choosing an appropriate new Lyapunov functional, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs). Finally, numerical examples are presented to illustrate the effectiveness of the theoretical results.

Keywords: Genetic regulatory network, Time-varying delay, Uncertain system, Lyapunov-Krasovskii functional

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
6007 A Framework for Review Spam Detection Research

Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim

Abstract:

With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.

Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
6006 Effect of Various Nozzle Profiles on Performance of a Two Phase Flow Jet Pump

Authors: Vishnu Prasad Sharma, S. Kumaraswamy, A. Mani

Abstract:

This paper reports on the results of experimental investigations on the performance of a jet pump operated under selected primary flows to optimize the related parameters. For this purpose a two-phase flow jet pump was used employing various profiles of nozzles as the primary device which was designed, fabricated and used along with the combination of mixing tube and diffuser. The profiles employed were circular, conical, and elliptical. The diameter of the nozzle used was 4 mm. The area ratio of the jet pump was 0.16. The test facility created for this purpose was an open loop continuous circulation system. Performance of the jet pump was obtained as iso-efficiency curves on characteristic curves drawn for various water flow rates. To perform the suction capability, evacuation test was conducted at best efficiency point for all the profiles.

Keywords: Evacuation test, jet pump, nozzle profile, nozzle spacing, performance test, two phase flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3324
6005 Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition

Authors: A. K. Bhandari, A. Kumar, P. K. Padhy

Abstract:

In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.

Keywords: Singular Value Decomposition (SVD), discretecosine transforms (DCT), image equalization and satellite imagecontrast enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3845
6004 Study of Effective Moisture Diffusivity of Oak Acorn

Authors: Habibeh Nalbandi, Sadegh Seiiedlou, Hamid R. Ghasemzadeh, Naser Hamdami

Abstract:

The purpose of present work was to study the drying kinetics of whole acorn and its kernel at different drying air temperatures and their effective moisture diffusivity. The results indicated that the drying time of whole acorn was 442, 206 and 188 min at the air temperature of 65, 75 and 85ºC, respectively. At the same temperatures, the drying time of kernel was 131, 56 and 76min. The results showed that the effect of drying air temperature increasing on the drying time reduction could not be significant on acorn drying at all conditions. The effective moisture diffusivity of whole acorn and kernel increased with increasing air temperature from 65 to 75ºC. However more air temperature increasing, led to decreasing this property of acorn kernel. The critical temperature of acorn drying was about 75°C in which acorn kernel had the highest effective moisture diffusivity.

Keywords: Critical temperature, Drying kinetics, Moisture diffusivity, Oak acorn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
6003 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor

Authors: R. Mechgoug, A. Titaouine

Abstract:

Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.

Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
6002 Technique for Online Condition Monitoring of Surge Arrestors

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Lightning overvoltage phenomenon in power systems cannot be avoided; however, it can be controlled to certain extent. To prevent system failure, power system equipment must be protected against overvoltage. Metal Oxide Surge Arrestors (MOSA) are connected in the system to provide protection against overvoltages. Under normal working conditions, MOSA function as, insulators, offering a conductive path during overvoltage events. MOSA consists of zinc oxide elements (ZnO Blocks) which has non-linear V-I characteristics. The ZnO blocks are connected in series and fitted in ceramic or polymer housing. Over time, these components degrade due to continuous operation. The degradation of zinc oxide elements increases the leakage current flowing through the surge arrestors. This increased leakage current results in elevated temperatures within the surge arrester, further decreasing the resistance of the zinc oxide elements. Consequently, the leakage current increases, leading to higher temperatures within the MOSA. This cycle creates thermal runaway conditions for the MOSA. Once a surge arrester reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arrestors. Given that MOSA constitutes a core protective device for electrical power systems against transients, it contributes significantly to the reliable operation of power system networks. Therefore, periodic condition monitoring of surge arrestors is essential. Both online and offline condition monitoring techniques are available for surge arrestors. Offline condition monitoring techniques are not as popular because they require the removal of surge arrestors from the system, which requires system shutdown. Therefore, online condition monitoring techniques are more commonly used. This paper presents an evaluation technique for the surge arrester condition based on leakage current analysis. The maximum amplitudes of total leakage current (IT), fundamental resistive leakage current (IR), and third harmonic resistive leakage current (I3rd) are analyzed as indicators for surge arrester condition monitoring.

Keywords: Metal Oxide Surge Arrester, MOSA, Over voltage, total leakage current, resistive leakage current, third harmonic resistive leakage current, capacitive leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99
6001 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
6000 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process

Authors: Dariush Jafari, Seyed Ali Jafari

Abstract:

The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.

Keywords: ANN, biosorption, cadmium, packed-bed, potable water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132