Search results for: traveling salesman problem.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3583

Search results for: traveling salesman problem.

3583 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
3582 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem

Authors: San Nah Sze, Wei King Tiong

Abstract:

The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.

Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3166
3581 Genetic Algorithms with Oracle for the Traveling Salesman Problem

Authors: Robin Gremlich, Andreas Hamfelt, Héctor de Pereda, Vladislav Valkovsky

Abstract:

By introducing the concept of Oracle we propose an approach for improving the performance of genetic algorithms for large-scale asymmetric Traveling Salesman Problems. The results have shown that the proposed approach allows overcoming some traditional problems for creating efficient genetic algorithms.

Keywords: Genetic algorithms, Traveling Salesman Problem, optimal decision distribution, oracle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
3580 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
3579 Block Based Imperial Competitive Algorithm with Greedy Search for Traveling Salesman Problem

Authors: Meng-Hui Chen, Chiao-Wei Yu, Pei-Chann Chang

Abstract:

Imperial competitive algorithm (ICA) simulates a multi-agent algorithm. Each agent is like a kingdom has its country, and the strongest country in each agent is called imperialist, others are colony. Countries are competitive with imperialist which in the same kingdom by evolving. So this country will move in the search space to find better solutions with higher fitness to be a new imperialist. The main idea in this paper is using the peculiarity of ICA to explore the search space to solve the kinds of combinational problems. Otherwise, we also study to use the greed search to increase the local search ability. To verify the proposed algorithm in this paper, the experimental results of traveling salesman problem (TSP) is according to the traveling salesman problem library (TSPLIB). The results show that the proposed algorithm has higher performance than the other known methods.

Keywords: Traveling Salesman Problem, Artificial Chromosomes, Greedy Search, Imperial Competitive Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
3578 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem

Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota

Abstract:

Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.

Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
3577 The Frequency Graph for the Traveling Salesman Problem

Authors: Y. Wang

Abstract:

Traveling salesman problem (TSP) is hard to resolve when the number of cities and routes become large. The frequency graph is constructed to tackle the problem. A frequency graph maintains the topological relationships of the original weighted graph. The numbers on the edges are the frequencies of the edges emulated from the local optimal Hamiltonian paths. The simplest kind of local optimal Hamiltonian paths are computed based on the four vertices and three lines inequality. The search algorithm is given to find the optimal Hamiltonian circuit based on the frequency graph. The experiments show that the method can find the optimal Hamiltonian circuit within several trials.

Keywords: Traveling salesman problem, frequency graph, local optimal Hamiltonian path, four vertices and three lines inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
3576 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: Frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
3575 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

Authors: Cha-Hwa Lin, Je-Wei Hu

Abstract:

The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).

Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
3574 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem

Authors: S. B. Liu, K. M. Ng, H. L. Ong

Abstract:

This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.

Keywords: Local search, overlapped neighborhood, travelingsalesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
3573 An Improved Genetic Algorithm to Solve the Traveling Salesman Problem

Authors: Omar M. Sallabi, Younis El-Haddad

Abstract:

The Genetic Algorithm (GA) is one of the most important methods used to solve many combinatorial optimization problems. Therefore, many researchers have tried to improve the GA by using different methods and operations in order to find the optimal solution within reasonable time. This paper proposes an improved GA (IGA), where the new crossover operation, population reformulates operation, multi mutation operation, partial local optimal mutation operation, and rearrangement operation are used to solve the Traveling Salesman Problem. The proposed IGA was then compared with three GAs, which use different crossover operations and mutations. The results of this comparison show that the IGA can achieve better results for the solutions in a faster time.

Keywords: AI, Genetic algorithms, TSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
3572 Extended Low Power Bus Binding Combined with Data Sequence Reordering

Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho

Abstract:

In this paper, we address the problem of reducing the switching activity (SA) in on-chip buses through the use of a bus binding technique in high-level synthesis. While many binding techniques to reduce the SA exist, we present yet another technique for further reducing the switching activity. Our proposed method combines bus binding and data sequence reordering to explore a wider solution space. The problem is formulated as a multiple traveling salesman problem and solved using simulated annealing technique. The experimental results revealed that a binding solution obtained with the proposed method reduces 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8% on average) of the switching activity when compared with conventional binding-only and hybrid binding-encoding methods, respectively.

Keywords: low power, bus binding, switching activity, multiple traveling salesman problem, data sequence reordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
3571 Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms

Authors: Fatma A. Karkory, Ali A. Abudalmola

Abstract:

The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.

Keywords: Heuristics, minimum spanning tree algorithm, Nearest Neighbor, Travelling Salesman Problem (TSP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7765
3570 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
3569 Optimizing Logistics for Courier Organizations with Considerations of Congestions and Pickups: A Courier Delivery System in Amman as Case Study

Authors: Nader A. Al Theeb, Zaid Abu Manneh, Ibrahim Al-Qadi

Abstract:

Traveling salesman problem (TSP) is a combinatorial integer optimization problem that asks "What is the optimal route for a vehicle to traverse in order to deliver requests to a given set of customers?”. It is widely used by the package carrier companies’ distribution centers. The main goal of applying the TSP in courier organizations is to minimize the time that it takes for the courier in each trip to deliver or pick up the shipments during a day. In this article, an optimization model is constructed to create a new TSP variant to optimize the routing in a courier organization with a consideration of congestion in Amman, the capital of Jordan. Real data were collected by different methods and analyzed. Then, concert technology - CPLEX was used to solve the proposed model for some random generated data instances and for the real collected data. At the end, results have shown a great improvement in time compared with the current trip times, and an economic study was conducted afterwards to figure out the impact of using such models.

Keywords: Travel salesman problem, congestions, pick-up, integer programming, package carriers, service engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
3568 A New Heuristic for Improving the Performance of Genetic Algorithm

Authors: Warattapop Chainate, Peeraya Thapatsuwan, Pupong Pongcharoen

Abstract:

The hybridisation of genetic algorithm with heuristics has been shown to be one of an effective way to improve its performance. In this work, genetic algorithm hybridised with four heuristics including a new heuristic called neighbourhood improvement were investigated through the classical travelling salesman problem. The experimental results showed that the proposed heuristic outperformed other heuristics both in terms of quality of the results obtained and the computational time.

Keywords: Genetic Algorithm, Hybridisation, Metaheuristics, Travelling Salesman Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
3567 DACS3:Embedding Individual Ant Behavior in Ant Colony System

Authors: Zulaiha Ali Othman, Helmi Md Rais, Abdul Razak Hamdan

Abstract:

Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.

Keywords: Dynamic Ant Colony System (DACS), Traveling Salesmen Problem (TSP), Optimization, Swarm Intelligent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
3566 DNA Computing for an Absolute 1-Center Problem: An Evolutionary Approach

Authors: Zuwairie Ibrahim, Yusei Tsuboi, Osamu Ono, Marzuki Khalid

Abstract:

Deoxyribonucleic Acid or DNA computing has emerged as an interdisciplinary field that draws together chemistry, molecular biology, computer science and mathematics. Thus, in this paper, the possibility of DNA-based computing to solve an absolute 1-center problem by molecular manipulations is presented. This is truly the first attempt to solve such a problem by DNA-based computing approach. Since, part of the procedures involve with shortest path computation, research works on DNA computing for shortest path Traveling Salesman Problem, in short, TSP are reviewed. These approaches are studied and only the appropriate one is adapted in designing the computation procedures. This DNA-based computation is designed in such a way that every path is encoded by oligonucleotides and the path-s length is directly proportional to the length of oligonucleotides. Using these properties, gel electrophoresis is performed in order to separate the respective DNA molecules according to their length. One expectation arise from this paper is that it is possible to verify the instance absolute 1-center problem using DNA computing by laboratory experiments.

Keywords: DNA computing, operation research, 1-center problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
3565 Ant System with Acoustic Communication

Authors: S. Bougrine, S. Ouchraa, B. Ahiod, A. A. El Imrani

Abstract:

Ant colony optimization is an ant algorithm framework that took inspiration from foraging behavior of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.

Keywords: Acoustic Communication, Ant Colony Optimization, Local Search, Traveling Salesman Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
3564 Two Individual Genetic Algorithm

Authors: Younis R. Elhaddad, Aiman S.Gannous

Abstract:

The particular interests of this paper is to explore if the simple Genetic Algorithms (GA) starts with population of only two individuals and applying different crossover technique over these parents to produced 104 children, each one has different attributes inherited from their parents; is better than starting with population of 100 individuals; and using only one type crossover (order crossover OX). For this reason we implement GA with 52 different crossover techniques; each one produce two children; which means 104 different children will be produced and this may discover more search space, also we implement classic GA with order crossover and many experiments were done over 3 Travel Salesman Problem (TSP) to find out which method is better, and according to the results we can say that GA with Multi-crossovers is much better.

Keywords: Artificial intelligence, genetic algorithm, order crossover, travel salesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
3563 Optimization Technique in Scheduling Duck Tours

Authors: Norhazwani M. Y., Khoo, C. F., Hasrul Nisham R.

Abstract:

Tourism industries are rapidly increased for the last few years especially in Malaysia. In order to attract more tourists, Malaysian Governance encourages any effort to increase Malaysian tourism industry. One of the efforts in attracting more tourists in Malacca, Malaysia is a duck tour. Duck tour is an amphibious sightseeing tour that works in two types of engines, hence, it required a huge cost to operate and maintain the vehicle. To other country, it is not so new but in Malaysia, it is just introduced, thus it does not have any systematic routing yet. Therefore, this paper proposed an optimization technique to formulate and schedule this tour to minimize the operating costs by considering it into Travelling Salesman Problem (TSP). The problem is then can be solved by one of the optimization technique especially meta-heuristics approach such as Tabu Search (TS) and Reactive Tabu Search (RTS).

Keywords: Optimization, Reactive Tabu Search, Tabu Search, Travelling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
3562 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Authors: Younis R. Elhaddad

Abstract:

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3400
3561 DACS3: Embedding Individual Ant Behavior in Ant Colony System

Authors: Zulaiha Ali Othman, Helmi Md Rais, Abdul Razak Hamdan

Abstract:

Ants are fascinating creatures that demonstrate the ability to find food and bring it back to their nest. Their ability as a colony, to find paths to food sources has inspired the development of algorithms known as Ant Colony Systems (ACS). The principle of cooperation forms the backbone of such algorithms, commonly used to find solutions to problems such as the Traveling Salesman Problem (TSP). Ants communicate to each other through chemical substances called pheromones. Modeling individual ants- ability to manipulate this substance can help an ACS find the best solution. This paper introduces a Dynamic Ant Colony System with threelevel updates (DACS3) that enhance an existing ACS. Experiments were conducted to observe single ant behavior in a colony of Malaysian House Red Ants. Such behavior was incorporated into the DACS3 algorithm. We benchmark the performance of DACS3 versus DACS on TSP instances ranging from 14 to 100 cities. The result shows that the DACS3 algorithm can achieve shorter distance in most cases and also performs considerably faster than DACS.

Keywords: Dynamic Ant Colony System (DACS), TravelingSalesmen Problem (TSP), Optimization, Swarm Intelligent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
3560 An Integrated Framework for the Realtime Investigation of State Space Exploration

Authors: Jörg Lassig, Stefanie Thiem

Abstract:

The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.

Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
3559 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems

Authors: I. Abuiziah, N. Shakarneh

Abstract:

Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.

Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5059
3558 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635
3557 Transferring Route Plan over Time

Authors: Barıs Kocer, Ahmet Arslan

Abstract:

Travelling salesman problem (TSP) is a combinational optimization problem and solution approaches have been applied many real world problems. Pure TSP assumes the cities to visit are fixed in time and thus solutions are created to find shortest path according to these point. But some of the points are canceled to visit in time. If the problem is not time crucial it is not important to determine new routing plan but if the points are changing rapidly and time is necessary do decide a new route plan a new approach should be applied in such cases. We developed a route plan transfer method based on transfer learning and we achieved high performance against determining a new model from scratch in every change.

Keywords: genetic algorithms, transfer learning, travellingsalesman problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
3556 A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia

Authors: Diana Fajardo, Sebastián Ortiz, Oscar Herrera, Angélica Santis

Abstract:

Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.

Keywords: Heuristics, optimization model, savings algorithm used vehicular oil, VRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
3555 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: Education, evolutionary algorithms, evolution strategies, interactive learning applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
3554 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

Authors: Mazin Z. Othman

Abstract:

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662