Search results for: Blood flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2586

Search results for: Blood flow

276 Oxygen Transfer by Multiple Inclined Plunging Water Jets

Authors: Surinder Deswal

Abstract:

There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.

Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
275 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
274 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally

Authors: Mahdi Hamzehei

Abstract:

In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.

Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
273 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
272 A Group Setting of IED in Microgrid Protection Management System

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu

Abstract:

There are a number of Distributed Generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the Intelligent Electronic Device (IED) and a Supervisory Control and Data Acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a Microgrid Protection Management System (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.

Keywords: IEC 61850, IED, Group Setting, Microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
271 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel J. O. Ferreira, Juan H. Sosa-Arnao, Bruno C. Moreira, Leonardo P. Rangel, Song W. Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugarcane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, superheaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller- Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows observing some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
270 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
269 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
268 Moving Area Filter to Detect Object in Video Sequence from Moving Platform

Authors: Sallama Athab, Hala Bahjat

Abstract:

Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.

Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
267 Turbulent Mixing and its Effects on Thermal Fatigue in Nuclear Reactors

Authors: Eggertson, E.C. Kapulla, R, Fokken, J, Prasser, H.M.

Abstract:

The turbulent mixing of coolant streams of different temperature and density can cause severe temperature fluctuations in piping systems in nuclear reactors. In certain periodic contraction cycles these conditions lead to thermal fatigue. The resulting aging effect prompts investigation in how the mixing of flows over a sharp temperature/density interface evolves. To study the fundamental turbulent mixing phenomena in the presence of density gradients, isokinetic (shear-free) mixing experiments are performed in a square channel with Reynolds numbers ranging from 2-500 to 60-000. Sucrose is used to create the density difference. A Wire Mesh Sensor (WMS) is used to determine the concentration map of the flow in the cross section. The mean interface width as a function of velocity, density difference and distance from the mixing point are analyzed based on traditional methods chosen for the purposes of atmospheric/oceanic stratification analyses. A definition of the mixing layer thickness more appropriate to thermal fatigue and based on mixedness is devised. This definition shows that the thermal fatigue risk assessed using simple mixing layer growth can be misleading and why an approach that separates the effects of large scale (turbulent) and small scale (molecular) mixing is necessary.

Keywords: Concentration measurements, Mixedness, Stablystratified turbulent isokinetic mixing layer, Wire mesh sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
266 The Impacts of Food Safety Standards on China Export of Vegetables and Fruits

Authors: Lei Dou, Mitsuhiro Nakagawa, Fei Yan, Ping Li

Abstract:

Participation in global trade means that Chinas vegetables and fruits industry faces international food safety standards and increased scrutiny worldwide. The objectives of this paper were to investigate how existing food safety standards and regulations in the importing countries impact the export of vegetables and fruits from China. This paper discussed the current and historical situations of Chinas vegetables and fruits export from 1996 to 2010, analyzed the Maximum Residual Limit (MRL) standards of pesticides imposed by importing countries, quantitatively estimated the impacts of food safety standards on Chinas vegetables and fruits export based on a gravity model. The results showed that although transportation distance between trade partners and tariff rates on vegetables and fruits were still the importantly resistant factors for China export, vegetables and fruits export was sensitive to the number of regulated pesticides, the strictness, and the level of food safety standards imposed by importing countries, which showed a significant trade flow effect, stricter food safety standards, increased number of regulated pesticides significantly inhibit China export of vegetables and fruits. Moreover, Chinas food safety standards also showed a significantly effect on vegetables and fruits export, which inhibited export to some extent. KeywordsFood safety standards, MRL, Vegetables, Fruits, Export.

Keywords: Food safety standards, MRL, Vegetables, Fruits, Export.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3223
265 Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory

Authors: Ghassan H. Halasa

Abstract:

Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.

Keywords: Evolution of Matter, Multidimensional spaces, relativity, Big Bang Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
264 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: Acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
263 Understanding the Selectional Preferences of the Twitter Mentions Network

Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das

Abstract:

Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.

Keywords: Social network analysis, information diffusion, personality and values, Twitter Mentions Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
262 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.

Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
261 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation

Authors: Aicha Majda, Abdelhamid El Hassani

Abstract:

Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.

Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
260 Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers

Authors: Lippong Tan, Yuenting Kwok, Ahbijit Date, Aliakbar Akbarzadeh

Abstract:

A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.

Keywords: Phase change material, thermal enhancement, aluminum spiral fillers, fins

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405
259 Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling

Authors: ZerarkaHizia, Akchiche Mustapha, Prunier Florent

Abstract:

Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software.

Keywords: Equivalent deviatory strain, landslide, numerical modeling, topographic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
258 A Piscan Ulcerative Aeromonas Infection

Authors: Ibrahim M. S. Shnawa, Bashar A. H. E. Alsadi, Kalida K. Alniaem

Abstract:

In the immunologic sense, clinical infection is a state of failure of the immune system to combat the pathogenic weapon of the bacteria invading the host. A motile gram negative vibroid organism associated with marked mono and poly nuclear cell responses was traced during the examination of a clinical material from an infected common carp Cyprinus carpio. On primary plate culture, growth was shown to be pure, dense population of an Aeromonas-like colony morphotype. The pure isolate was found to be; Aerobic, facultatively anaerobic, non-halophilic, grew at 0C, and 37C, oxidase positive utilizes glucose through fermentative pathway, resist 0/129 and novobiocin, produces alanine and lysine decarboxylases but non-producing ornithine dehydrolases. Tests for the in vitro determinants of pathogenicity has shown to be; Betahaemolytic onto blood agar, gelatinase, casienase and amylase producer. Three in vivo determinants of pathogenicity were tested as, the lethal dose fifty, the pathogenesis and pathogenicity. It was evident that 0.1 milliliter of the causal bacterial cell suspension of a density 1 x 107 CFU/ml injected intramuscularly into an average of 100gms fish toke five days incubation period, then at the day six morbidity and mortality were initiated. LD50 was recorded at the day 12 post-infection. Use of an LD50 doses to study the pathogenicity, reveals mononuclear and polynuclear cell responses, on examining the stained direct films of the clinical materials from the experimentally infected fish. Re-isolation tests confirm that the reisolant is same. The course of the infection in natural case was shown manifestation of; skin ulceration, haemorrhage and descaling. On evisceration, the internal organs were shown; congestion in the intestines, spleen and, air sacs. The induced infection showed a milder form of these manifestations. The grading of the virulence of this organism was virulent causing chronic course of infections as indicated from the pathogenesis and pathogenicity studies. Thus the infectious bacteria were consistent with Aeromonas hydrophila, and the infection was chronic.

Keywords: Piscan, inflammatory respnonse, pure culture, pathogen, chronic, infection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
257 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
256 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
255 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
254 Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff

Authors: Karuppasamy Pandian. M, Krishna Raj. K, Sabarinath. K, Sandeep. G, Sanal Kumar. V.R.

Abstract:

Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.

Keywords: Igniter Characteristics, Solid Propellant Rocket, SRM Liftoff, Starting Thrust Transient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
253 Alumina Supported Cu-Mn-La Catalysts for CO and VOCs Oxidation

Authors: Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Cv. Petrova, Georgi V. Avdeev, Diana D. Nihtianova, Krasimir I. Ivanov, Tatyana T. Tabakova

Abstract:

Recently, copper and manganese-containing systems are recognized as active and selective catalysts in many oxidation reactions. The main idea of this study is to obtain more information about γ-Al2O3 supported Cu-La catalysts and to evaluate their activity to simultaneous oxidation of CO, CH3OH and dimethyl ether (DME). The catalysts were synthesized by impregnation of support with a mixed aqueous solution of nitrates of copper, manganese and lanthanum under different conditions. XRD, HRTEM/EDS, TPR and thermal analysis were performed to investigate catalysts’ bulk and surface properties. The texture characteristics were determined by Quantachrome Instruments NOVA 1200e specific surface area and pore analyzer. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor in a wide temperature range. On the basis of XRD analysis and HRTEM/EDS, it was concluded that the active component of the mixed Cu-Mn-La/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio and consisted of at least four compounds – CuO, La2O3, MnO2 and Cu1.5Mn1.5O4. A homogeneous distribution of the active component on the carrier surface was found. The chemical composition strongly influenced catalytic properties. This influence was quite variable with regards to the different processes.

Keywords: Supported copper-manganese-lanthanum catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
252 Role of Oxidative DNA Damage in Pathogenesis of Diabetic Neuropathy

Authors: Ireneusz Majsterek, Anna Merecz, Agnieszka Sliwinska, Marcin Kosmalski, Jacek Kasznicki, Jozef Drzewoski

Abstract:

Oxidative stress is considered to be the cause for onset and the progression of type 2 diabetes mellitus (T2DM) and complications including neuropathy. It is a deleterious process that can be an important mediator of damage to cell structures: protein, lipids and DNA. Data suggest that in patients with diabetes and diabetic neuropathy DNA repair is impaired, which prevents effective removal of lesions. Objective: The aim of our study was to evaluate the association of the hOGG1 (326 Ser/Cys) and XRCC1 (194 Arg/Trp, 399 Arg/Gln) gene polymorphisms whose protein is involved in the BER pathway with DNA repair efficiency in patients with diabetes type 2 and diabetic neuropathy compared to the healthy subjects. Genotypes were determined by PCR-RFLP analysis in 385 subjects, including 117 with type 2 diabetes, 56 with diabetic neuropathy and 212 with normal glucose metabolism. The polymorphisms studied include codon 326 of hOGG1 and 194, 399 of XRCC1 in the base excision repair (BER) genes. Comet assay was carried out using peripheral blood lymphocytes from the patients and controls. This test enabled the evaluation of DNA damage in cells exposed to hydrogen peroxide alone and in the combination with the endonuclease III (Nth). The results of the analysis of polymorphism were statistically examination by calculating the odds ratio (OR) and their 95% confidence intervals (95% CI) using the ¤ç2-tests. Our data indicate that patients with diabetes mellitus type 2 (including those with neuropathy) had higher frequencies of the XRCC1 399Arg/Gln polymorphism in homozygote (GG) (OR: 1.85 [95% CI: 1.07-3.22], P=0.3) and also increased frequency of 399Gln (G) allele (OR: 1.38 [95% CI: 1.03-1.83], P=0.3). No relation to other polymorphisms with increased risk of diabetes or diabetic neuropathy. In T2DM patients complicated by neuropathy, there was less efficient repair of oxidative DNA damage induced by hydrogen peroxide in both the presence and absence of the Nth enzyme. The results of our study suggest that the XRCC1 399 Arg/Gln polymorphism is a significant risk factor of T2DM in Polish population. Obtained data suggest a decreased efficiency of DNA repair in cells from patients with diabetes and neuropathy may be associated with oxidative stress. Additionally, patients with neuropathy are characterized by even greater sensitivity to oxidative damage than patients with diabetes, which suggests participation of free radicals in the pathogenesis of neuropathy.

Keywords: Diabetic neuropathy, oxidative stress, gene polymorphisms, oxidative DNA damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
251 The Effect of Physical Exercise to Level of Nuclear Factor Kappa B on Serum, Macrophages and Myocytes

Authors: Eryati Darwin, Eka Fithra Elfi, Indria Hafizah

Abstract:

Background: Physical exercise induces a pattern of hormonal and immunological responses that prevent endothelial dysfunction by maintaining the availability of nitric oxide (NO). Regular and moderate exercise stimulates NO release, that can be considered as protective factor of cardiovascular diseases, while strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) triggers endothelial activation which results in an increased vascular permeability. Nuclear gene factor kappa B (NF-κB) activates biological effect of TNF-α. Aim of Study: To determine the effect of physical exercise on the endothelial and skeletal muscle, we measured the level of NF-κB on rats’ serum, macrophages, and myocytes after strenuous physical exercise. Methods: 30 male Rattus norvegicus in the age of eight weeks were randomly divided into five groups (each containing six), and there were treated groups (T) and control group (C). The treated groups obtain strenuous physical exercise by ran on treadmill at 32 m/minutes for 1 hour or until exhaustion. Blood samples, myocytes of gastrocnemius muscle, and intraperitoneal macrophages were collected sequentially. There were investigated immediately, 2 hours, 6 hours, and 24 hours (T1, T2, T3, and T4) after sacrifice. The levels of NF-κB were measured by ELISA methods. Results: From our study, we found that the levels of NF-κB on myocytes in treated group from which its specimen was taken immediately (T1), 2 hours after treadmill (T2), and 6 hours after treadmill (T3) were significantly higher than control group (p<0.05), while the group from which its specimen was taken 24 hours after treadmill, was no significantly different (p>0.05). Also on macrophages, NF-κB in treated groups T1, T2, and T3 was significantly higher than control group (p<0.05), but there was no difference between T4 and control group (p>0.05). The level of serum NF-κB was not significantly different between treatment group as well as compared to control group (p>0.05). Serum NF-κB was significantly higher than the level on macrophages and myocytes (p<0.05). Conclusion: This study demonstrated that strenuous physical exercise stimulates the activation of NF-κB that plays a role in vascular inflammation and muscular damage, and may be recovered after resting period.

Keywords: Endothelial function, inflammation, NF-κB, physical exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
250 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
249 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: Children, insulin resistance indices, metabolic syndrome, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
248 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm

Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh

Abstract:

The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.

Keywords: Diversion Tunnel, Optimization, PSO Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
247 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. 

Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673