Search results for: transient temperature prediction
1527 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints
Abstract:
The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.
Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11441526 Face Image Coding Using Face Prototyping
Authors: Jaroslav Polec, Lenka Krulikovská, Natália Helešová, Tomáš Hirner
Abstract:
In this paper we present a novel approach for face image coding. The proposed method makes a use of the features of video encoders like motion prediction. At first encoder selects appropriate prototype from the database and warps it according to features of encoding face. Warped prototype is placed as first I frame. Encoding face is placed as second frame as P frame type. Information about features positions, color change, selected prototype and data flow of P frame will be sent to decoder. The condition is both encoder and decoder own the same database of prototypes. We have run experiment with H.264 video encoder and obtained results were compared to results achieved by JPEG and JPEG2000. Obtained results show that our approach is able to achieve 3 times lower bitrate and two times higher PSNR in comparison with JPEG. According to comparison with JPEG2000 the bitrate was very similar, but subjective quality achieved by proposed method is better.
Keywords: Triangulation, H.264, Model-based coding, Average face
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251525 Location Management in Cellular Networks
Authors: Bhavneet Sidhu, Hardeep Singh
Abstract:
Cellular networks provide voice and data services to the users with mobility. To deliver services to the mobile users, the cellular network is capable of tracking the locations of the users, and allowing user movement during the conversations. These capabilities are achieved by the location management. Location management in mobile communication systems is concerned with those network functions necessary to allow the users to be reached wherever they are in the network coverage area. In a cellular network, a service coverage area is divided into smaller areas of hexagonal shape, referred to as cells. The cellular concept was introduced to reuse the radio frequency. Continued expansion of cellular networks, coupled with an increasingly restricted mobile spectrum, has established the reduction of communication overhead as a highly important issue. Much of this traffic is used in determining the precise location of individual users when relaying calls, with the field of location management aiming to reduce this overhead through prediction of user location. This paper describes and compares various location management schemes in the cellular networks.Keywords: Cellular Networks, Location Area, MobilityManagement, Paging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40221524 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data
Authors: Benjamin D. Leiby, Darryl K. Ahner
Abstract:
This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions, while presenting a need for further refinement that mimics predictive mean matching.
Keywords: Correlation, country conflict, imputation, stochastic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4181523 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22911522 Mobile Robot Path Planning Utilizing Probability Recursive Function
Authors: Ethar H. Khalil, Bahaa I. Kazem
Abstract:
In this work a software simulation model has been proposed for two driven wheels mobile robot path planning; that can navigate in dynamic environment with static distributed obstacles. The work involves utilizing Bezier curve method in a proposed N order matrix form; for engineering the mobile robot path. The Bezier curve drawbacks in this field have been diagnosed. Two directions: Up and Right function has been proposed; Probability Recursive Function (PRF) to overcome those drawbacks. PRF functionality has been developed through a proposed; obstacle detection function, optimization function which has the capability of prediction the optimum path without comparison between all feasible paths, and N order Bezier curve function that ensures the drawing of the obtained path. The simulation results that have been taken showed; the mobile robot travels successfully from starting point and reaching its goal point. All obstacles that are located in its way have been avoided. This navigation is being done successfully using the proposed PRF techniques.Keywords: Mobile robot, path planning, Bezier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14631521 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451520 Numerical Simulation for the Formability Prediction of the Laser Welded Blanks (TWB)
Authors: Hossein Mamusi, Abolfazl Masoumi, Ramezanali Mahdavinezhad
Abstract:
Tailor-welded Blanks (TWBs) are tailor made for different complex component designs by welding multiple metal sheets with different thicknesses, shapes, coatings or strengths prior to forming. In this study the Hemispherical Die Stretching (HDS) test (out-of-plane stretching) of TWBs were simulated via ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of Stainless steel (AISI 304) laser welded blanks with different thicknesses. Two criteria were used to detect the start of necking to determine the FLD for TWBs and parent sheet metals. These two criteria are the second derivatives of the major and thickness strains that are given from the strain history of simulation. In the other word, in these criteria necking starts when the second derivative of thickness or major strain reaches its maximum. With having the time of onset necking, one can measure the major and minor strains at the critical area and determine the forming limit curve.Keywords: TWB, Forming Limit Diagram, Necking criteria, ABAQUS/Explicit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431519 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware
Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas
Abstract:
Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.
Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38881518 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: Instance selection, data reduction, MapReduce, kNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10171517 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.
Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60401516 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100mm ×100mm ×400mmwith layers of non-homogeneously distributed fibers inside them were fabricated.
Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.
Keywords: Fiber reinforced concrete, 4-point bending, steel fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30091515 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25801514 The Effects of Detector Spacing on Travel Time Prediction on Freeways
Authors: Piyali Chaudhuri, Peter T. Martin, Aleksandar Z. Stevanovic, Chongkai Zhu
Abstract:
Loop detectors report traffic characteristics in real time. They are at the core of traffic control process. Intuitively, one would expect that as density of detection increases, so would the quality of estimates derived from detector data. However, as detector deployment increases, the associated operating and maintenance cost increases. Thus, traffic agencies often need to decide where to add new detectors and which detectors should continue receiving maintenance, given their resource constraints. This paper evaluates the effect of detector spacing on freeway travel time estimation. A freeway section (Interstate-15) in Salt Lake City metropolitan region is examined. The research reveals that travel time accuracy does not necessarily deteriorate with increased detector spacing. Rather, the actual location of detectors has far greater influence on the quality of travel time estimates. The study presents an innovative computational approach that delivers optimal detector locations through a process that relies on Genetic Algorithm formulation.Keywords: Detector, Freeway, Genetic algorithm, Travel timeestimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691513 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.
Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561512 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures
Authors: J. Menčík
Abstract:
Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151511 Recycling of Tungsten Alloy Swarf
Authors: A. A. Alhazza
Abstract:
The recycling process of Tungsten alloy (Swarf) by oxidation reduction technique have been investigated. The reduced powder was pressed under a pressure 20Kg/cm2 and sintered at 1150°C in dry hydrogen atmosphere. The particle size of the recycled alloy powder was 1-3 μm and the shape was regular at a reduction temperature 800°C. The chemical composition of the recycled alloy is the same as the primary Swarf.Keywords: Recycling, Swarf, Oxidation, Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231510 Optimization of Quercus cerris Bark Liquefaction
Authors: Luísa P. Cruz-Lopes, Hugo Costa e Silva, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves
Abstract:
The liquefaction process of cork based tree barks has led to an increase of interest due to its potential innovation in the lumber and wood industries. In this particular study the bark of Quercus cerris (Turkish oak) is used due to its appreciable amount of cork tissue, although of inferior quality when compared to the cork provided by other Quercus trees. This study aims to optimize alkaline catalysis liquefaction conditions, regarding several parameters. To better comprehend the possible chemical characteristics of the bark of Quercus cerris, a complete chemical analysis was performed. The liquefaction process was performed in a double-jacket reactor heated with oil, using glycerol and a mixture of glycerol/ethylene glycol as solvents, potassium hydroxide as a catalyst, and varying the temperature, liquefaction time and granulometry. Due to low liquefaction efficiency resulting from the first experimental procedures a study was made regarding different washing techniques after the filtration process using methanol and methanol/water. The chemical analysis stated that the bark of Quercus cerris is mostly composed by suberin (ca. 30%) and lignin (ca. 24%) as well as insolvent hemicelluloses in hot water (ca. 23%). On the liquefaction stage, the results that led to higher yields were: using a mixture of methanol/ethylene glycol as reagents and a time and temperature of 120 minutes and 200 ºC, respectively. It is concluded that using a granulometry of <80 mesh leads to better results, even if this parameter barely influences the liquefaction efficiency. Regarding the filtration stage, washing the residue with methanol and then distilled water leads to a considerable increase on final liquefaction percentages, which proves that this procedure is effective at liquefying suberin content and lignocellulose fraction.Keywords: Liquefaction, alkaline catalysis, optimization, Quercus cerris bark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911509 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: Forced convection, Square cylinder, nanofluid, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23621508 Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic
Authors: M. Chandrasekaran, D. Devarasiddappa
Abstract:
Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.Keywords: End milling, fuzzy logic, metal matrix composites, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711507 Effect of Different pH on Canthaxanthin Degradation
Authors: N. Seyedrazi, S. H. Razavi, Z. Emam-Djomeh
Abstract:
In this research, natural canthaxanthin as one of the most important carotenoids was extracted from Dietzia natronolimnaea HS-1. The changes of canthaxanthin enriched in oilin- water emulsions with vegetable oil (5 mg/ 100 mL), Arabic gum (5 mg/100 mL), and potassium sorbate (0.5 g/100 mL) was investigated. The effects of different pH (3, 5 and 7), as well as, time treatment (3, 18 and 33 days) in the environmental temperature (24°C) on the degradation were studied by response surface methodology (RSM). The Hunter values (L*, a*, and b*) and the concentration of canthaxanthin (C, mg/L) illustrated more degradation of this pigment at low pHs (pH≤ 4) by passing the time (days≥10) with R² 97.00%, 91.31%, 97.60%, and 99.54% for C, L*, a*, and b* respectively. The predicted model were found to be significant (p<0.05).Keywords: Degradation, Emulsion, Response SurfaceMethodology (RSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421506 Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.
Keywords: Adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241505 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6411504 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line
Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh
Abstract:
Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991503 Knowledge Based Wear Particle Analysis
Authors: Mohammad S. Laghari, Qurban A. Memon, Gulzar A. Khuwaja
Abstract:
The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.Keywords: Computer vision, knowledge based systems, morphology, wear particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441502 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher
Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim
Abstract:
Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26951501 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881500 Increasing Profitability Supported by Innovative Methods and Designing Monitoring Software in Condition-Based Maintenance: A Case Study
Authors: Nasrin Farajiparvar
Abstract:
In the present article, a new method has been developed to enhance the application of equipment monitoring, which in turn results in improving condition-based maintenance economic impact in an automobile parts manufacturing factory. This study also describes how an effective software with a simple database can be utilized to achieve cost-effective improvements in maintenance performance. The most important results of this project are indicated here: 1. 63% reduction in direct and indirect maintenance costs. 2. Creating a proper database to analyse failures. 3. Creating a method to control system performance and develop it to similar systems. 4. Designing a software to analyse database and consequently create technical knowledge to face unusual condition of the system. Moreover, the results of this study have shown that the concept and philosophy of maintenance has not been understood in most Iranian industries. Thus, more investment is strongly required to improve maintenance conditions.
Keywords: Condition-based maintenance, Economic savings, Iran industries, Machine life prediction software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761499 Numerical Modeling of Benzene Transport in Andosol and Sand: Adequacy of Diffusion and Equilibrium Adsorption Equations
Authors: Ping Du, Masaki Sagehashi, Akihiko Terada, Masaaki Hosomi
Abstract:
Prediction of benzene transport in soil and volatilization from soil to the atmosphere is important for the preservation of human health and management of contaminated soils. The adequacy of a simple numerical model, assuming two-phase diffusion and equilibrium of liquid/solid adsorption, was investigated by experimental data of benzene concentration in a flux chamber (with headspace) where Andosol and sand were filled. Adsorption experiment for liquid phase was performed to determine an adsorption coefficient. Furthermore, adequacy of vapor phase adsorption was also studied through two runs of experiment using sand with different water content. The results show that the model adequately predicted benzene transport and volatilization from Andosol and sand with water content of 14.0%. In addition, the experiment additionally revealed that vapor phase adsorption should be considered in diffusion model for sand with very low water content.
Keywords: Benzene; Transport Model, Adsorption, Soil Contaminant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901498 Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties
Authors: Hlaing Zaw Oo, N. Kostromina, V. Osipchik, T. Kravchenko, K. Yakovleva
Abstract:
The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.Keywords: Epoxy resins, modification, vinyl-containing compounds, deformation and strength properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586