Search results for: data safety.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8059

Search results for: data safety.

5869 Knowledge Transfer in Industrial Clusters

Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha

Abstract:

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Keywords: Industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
5868 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the structural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: Calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
5867 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790
5866 An Overview of the Application of Fuzzy Inference System for the Automation of Breast Cancer Grading with Spectral Data

Authors: Shabbar Naqvi, Jonathan M. Garibaldi

Abstract:

Breast cancer is one of the most frequent occurring cancers in women throughout the world including U.K. The grading of this cancer plays a vital role in the prognosis of the disease. In this paper we present an overview of the use of advanced computational method of fuzzy inference system as a tool for the automation of breast cancer grading. A new spectral data set obtained from Fourier Transform Infrared Spectroscopy (FTIR) of cancer patients has been used for this study. The future work outlines the potential areas of fuzzy systems that can be used for the automation of breast cancer grading.

Keywords: Breast cancer, FTIR, fuzzy inference system, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
5865 Management of Air Pollutants from Point Sources

Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde

Abstract:

Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.

Keywords: DBMS, NO2, SO2, Wind rose plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
5864 SQL Generator Based On MVC Pattern

Authors: Chanchai Supaartagorn

Abstract:

Structured Query Language (SQL) is the standard de facto language to access and manipulate data in a relational database. Although SQL is a language that is simple and powerful, most novice users will have trouble with SQL syntax. Thus, we are presenting SQL generator tool which is capable of translating actions and displaying SQL commands and data sets simultaneously. The tool was developed based on Model-View-Controller (MVC) pattern. The MVC pattern is a widely used software design pattern that enforces the separation between the input, processing, and output of an application. Developers take full advantage of it to reduce the complexity in architectural design and to increase flexibility and reuse of code. In addition, we use White-Box testing for the code verification in the Model module.

Keywords: MVC, relational database, SQL, White-Box testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
5863 Gender Based Variability Time Series Complexity Analysis

Authors: Ramesh K. Sunkaria, Puneeta Marwaha

Abstract:

Non linear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy normal sinus rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.

Keywords: Heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
5862 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: Separation, activity coefficients, ionic liquid, methyltrioctylammonium chloride, capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
5861 Fortification for P2P Grid Computing Used for Resource Discovery

Authors: Bhawneet Singh Marwah, Rishabh Rastogi, Shinon Kochar

Abstract:

Grid computing provides an effective infrastructure for massive computation among flexible and dynamic collection of individual system for resource discovery. The major challenge for grid computing is to prevent breaches and secure the data from trespassers. To overcome such conflicts a semantic approach can be designed which will filter the access requests of peers by checking the resource description specifying the data and the metadata as factual statements. Between every node in the grid a semantic firewall as a middleware will be present The intruder will be required to present an application specifying there needs to the firewall and hence accordingly the system will grant or deny the application request.

Keywords: Grid Computing, Metadata, Semantic, Peers, Resource Discovery, Firewall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
5860 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis

Abstract:

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

Keywords: Drilling, CAD based simulation, 3D-modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
5859 Energy Efficient Construction and the Seismic Resistance of Passive Houses

Authors: Vojko Kilar, Boris Azinović, David Koren

Abstract:

Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.

Keywords: Earthquake Response, Extruded Polystyrene (XPS), Low-Energy Buildings, Foundations on Thermal Insulation Layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
5858 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
5857 A Physical Theory of Information vs. a Mathematical Theory of Communication

Authors: Manouchehr Amiri

Abstract:

This article presents a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary Data Matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principle is investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Bekenstein, and mass-energy equivalence are derived.

Keywords: Physical theory of information, binary data matrix model, Shannon information theory, bit information principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159
5856 Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: Wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD protocol, DHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
5855 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: Android, permissions combination, API calls, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
5854 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
5853 Power Line Carrier for Power Telemetering

Authors: Tosaphol Ratniyomchai, Uthai Jaithong, Thanatchai Kulworawanichpong

Abstract:

This paper presents an application of power line carrier (PLC) for electrical power telemetering. This system has a special capability of transmitting the measured values to a centralized computer via power lines. The PLC modem as a passive high-pass filter is designed for transmitting and receiving information. Its function is to send the information carrier together with transmitted data by superimposing it on the 50 Hz power frequency signal. A microcontroller is employed to function as the main processing of the modem. It is programmed for PLC control and interfacing with other devices. Each power meter, connected via a PLC modem, is assigned with a unique identification number (address) for distinguishing each device from one another.

Keywords: Power telemetering, Power line carrier, High-passfilter, Digital data transmission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
5852 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.

Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
5851 Correlating Site-Specific Meteorological Data and Power Availability for Small-Scale, Multi-Source Renewable Energy Systems

Authors: James D. Clark, Bernard H. Stark

Abstract:

The paper presents a modelling methodology for small scale multi-source renewable energy systems. Using historical site-specific weather data, the relationships of cost, availability and energy form are visualised as a function of the sizing of photovoltaic arrays, wind turbines, and battery capacity. The specific dependency of each site on its own particular weather patterns show that unique solutions exist for each site. It is shown that in certain cases the capital component cost can be halved if the desired theoretical demand availability is reduced from 100% to 99%.

Keywords: Energy Analysis, Forecasting, Distributed powergeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
5850 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter

Authors: Dipankar Dhabak, Soumya Pandit

Abstract:

This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.

Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
5849 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
5848 Wavelet Transform and Support Vector Machine Approach for Fault Location in Power Transmission Line

Authors: V. Malathi, N.S.Marimuthu

Abstract:

This paper presents a wavelet transform and Support Vector Machine (SVM) based algorithm for estimating fault location on transmission lines. The Discrete wavelet transform (DWT) is used for data pre-processing and this data are used for training and testing SVM. Five types of mother wavelet are used for signal processing to identify a suitable wavelet family that is more appropriate for use in estimating fault location. The results demonstrated the ability of SVM to generalize the situation from the provided patterns and to accurately estimate the location of faults with varying fault resistance.

Keywords: Fault location, support vector machine, supportvector regression, transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
5847 Comparative Analysis of Transient-Fault Tolerant Schemes for Network on Chips

Authors: Muhammad Ali, Awais Adnan

Abstract:

Network on a chip (NoC) has been proposed as a viable solution to counter the inefficiency of buses in the current VLSI on-chip interconnects. However, as the silicon chip accommodates more transistors, the probability of transient faults is increasing, making fault tolerance a key concern in scaling chips. In packet based communication on a chip, transient failures can corrupt the data packet and hence, undermine the accuracy of data communication. In this paper, we present a comparative analysis of transient fault tolerant techniques including end-to-end, node-by-node, and stochastic communication based on flooding principle.

Keywords: NoC, fault-tolerance, transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
5846 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety

Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola

Abstract:

The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.

Keywords: Big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
5845 The Influences of Accountants’ Potential Performance on Their Working Process: Government Savings Bank, Northeast, Thailand

Authors: Prateep Wajeetongratana

Abstract:

The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses.

The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.

Keywords: Influence, Potential Performance, Success, Working Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
5844 Improving Fault Resilience and Reconstruction of Overlay Multicast Tree Using Leaving Time of Participants

Authors: Bhed Bahadur Bista

Abstract:

Network layer multicast, i.e. IP multicast, even after many years of research, development and standardization, is not deployed in large scale due to both technical (e.g. upgrading of routers) and political (e.g. policy making and negotiation) issues. Researchers looked for alternatives and proposed application/overlay multicast where multicast functions are handled by end hosts, not network layer routers. Member hosts wishing to receive multicast data form a multicast delivery tree. The intermediate hosts in the tree act as routers also, i.e. they forward data to the lower hosts in the tree. Unlike IP multicast, where a router cannot leave the tree until all members below it leave, in overlay multicast any member can leave the tree at any time thus disjoining the tree and disrupting the data dissemination. All the disrupted hosts have to rejoin the tree. This characteristic of the overlay multicast causes multicast tree unstable, data loss and rejoin overhead. In this paper, we propose that each node sets its leaving time from the tree and sends join request to a number of nodes in the tree. The nodes in the tree will reject the request if their leaving time is earlier than the requesting node otherwise they will accept the request. The node can join at one of the accepting nodes. This makes the tree more stable as the nodes will join the tree according to their leaving time, earliest leaving time node being at the leaf of the tree. Some intermediate nodes may not follow their leaving time and leave earlier than their leaving time thus disrupting the tree. For this, we propose a proactive recovery mechanism so that disrupted nodes can rejoin the tree at predetermined nodes immediately. We have shown by simulation that there is less overhead when joining the multicast tree and the recovery time of the disrupted nodes is much less than the previous works. Keywords

Keywords: Network layer multicast, Fault Resilience, IP multicast

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
5843 An Innovation of Travel Information Gathering Framework

Authors: Pairaya J., Buddhagarn R., Sukree S., Punthumadee K.

Abstract:

Application of Information Technology (IT) has revolutionized the functioning of business all over the world. Its impact has been felt mostly among the information of dependent industries. Tourism is one of such industry. The conceptual framework in this study represents an innovation of travel information searching system on mobile devices which is used as tools to deliver travel information (such as hotels, restaurants, tourist attractions and souvenir shops) for each user by travelers segmentation based on data mining technique to segment the tourists- behavior patterns then match them with tourism products and services. This system innovation is designed to be a knowledge incremental learning. It is a marketing strategy to support business to respond traveler-s demand effectively.

Keywords: Tourism, Innovation, Information Searching, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
5842 Evaluating the Radiation Dose Involved in Interventional Radiology Procedures

Authors: Kholood Baron

Abstract:

Radiologic interventional studies use fluoroscopy imaging guidance to perform both diagnostic and therapeutic procedures. These could result in high radiation doses being delivered to the patients and also to the radiology team. This is due to the prolonged fluoroscopy time and the large number of images taken, even when dose-minimizing techniques and modern fluoroscopic tools are applied. Hence, these procedures are part of the everyday routine of interventional radiology doctors, assistant nurses, and radiographers. Thus, it is important to estimate the radiation exposure dose they received in order to give objective advice and reduce both patient and radiology team radiation exposure dose. The aim of this study was to find out the total radiation dose reaching the radiologist and the patient during an interventional procedure, and to determine the impact of certain parameters on the patient dose. The radiation dose was measured by TLD devices (Thermoluminescent Dosimeter; radiation dosimeter device). Physicians, patients, nurses, and radiographers wore TLDs during 12 interventional radiology procedures performed in two hospitals, Mubarak and Chest Hospital. This study highlights the need for interventional radiologists to be mindful of the radiation doses received by both patients and medical staff during interventional radiology procedures. The findings emphasize the impact of factors such as fluoroscopy duration and the number of images taken on the patient dose. By raising awareness and providing insights into optimizing techniques and protective measures, this research contributes to the overall goal of reducing radiation doses and ensuring the safety of patients and medical staff.

Keywords: Dosimetry, radiation dose, interventional radiology procedures, patient radiation dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107
5841 Sensor Network Based Emergency Response and Navigation Support Architecture

Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan

Abstract:

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
5840 Comparison of Machine Learning Techniques for Single Imputation on Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.

Keywords: Machine Learning, audiograms, data imputations, single imputations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182