Search results for: temperature dependent.
1099 Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review
Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan, N. Mathiazhagan
Abstract:
Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.
Keywords: Laser Beam Welding (LBW), Mechanical properties, Titanium and Aluminium thin sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29131098 Pre-beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting
Authors: K. Yılmaz, B. Birol, M. N. Sarıdede, E. Yiğit
Abstract:
A bauxite ore can be utilized in Bayer Process, if the mass ratio of Al2O3 to SiO2 is greater than 10. Otherwise, its FexOy and SiO2 content should be removed. On the other hand, removal of TiO2 from the bauxite ore would be beneficial because of both lowering the red mud residue and obtaining a valuable raw material containing TiO2 mineral. In this study, the low grade diasporic bauxite ore of Yalvaç, Isparta, Turkey was roasted under reducing atmosphere and subjected to magnetic separation. According to the experimental results, 800°C for reduction temperature and 20000 Gauss of magnetic intensity were found to be the optimum parameters for removal of iron oxide and rutile from the nonmagnetic ore. On the other hand, 600°C and 5000 Gauss were determined to be the optimum parameters for removal of silica from the non-magnetic ore.Keywords: Low grade diasporic bauxite, magnetic separation, reduction roasting, separation index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32221097 Curing Time Effect on Behavior of Cement Treated Marine Clay
Authors: H. W. Xiao, F. H. Lee
Abstract:
Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39101096 Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys
Authors: N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, T. Kurennykh
Abstract:
Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.
Keywords: Additive technology, texture, Ti-6Al-4V, twins, oxygen content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14231095 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11991094 Modeling Reaction Time in Car-Following Behaviour Based on Human Factors
Authors: Atif Mehmood, Said M. Easa
Abstract:
This paper develops driver reaction-time models for car-following analysis based on human factors. The reaction time was classified as brake-reaction time (BRT) and acceleration/deceleration reaction time (ADRT). The BRT occurs when the lead vehicle is barking and its brake light is on, while the ADRT occurs when the driver reacts to adjust his/her speed using the gas pedal only. The study evaluates the effect of driver characteristics and traffic kinematic conditions on the driver reaction time in a car-following environment. The kinematic conditions introduced urgency and expectancy based on the braking behaviour of the lead vehicle at different speeds and spacing. The kinematic conditions were used for evaluating the BRT and are classified as normal, surprised, and stationary. Data were collected on a driving simulator integrated into a real car and included the BRT and ADRT (as dependent variables) and driver-s age, gender, driving experience, driving intensity (driving hours per week), vehicle speed, and spacing (as independent variables). The results showed that there was a significant difference in the BRT at normal, surprised, and stationary scenarios and supported the hypothesis that both urgency and expectancy had significant effects on BRT. Driver-s age, gender, speed, and spacing were found to be significant variables for the BRT in all scenarios. The results also showed that driver-s age and gender were significant variables for the ADRT. The research presented in this paper is part of a larger project to develop a driversensitive in-vehicle rear-end collision warning system.Keywords: Brake reaction time, car-following, human factors, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43141093 Unsteady Transient Free Convective Flow of an Incompressible Viscous Fluid under Influence of Uniform Transverse Magnetic Field
Authors: Praveen Saraswat, Vipin Kumar Verma, Rudraman Singh
Abstract:
The unsteady transient free convection flow of an incompressible dissipative viscous fluid between parallel plates at different distances have been investigated under porous medium. Due to presence of heat flux under the influence of uniform transverse magnetic field the velocity distribution and the temperature distribution, is shown graphically. Since exact solution is not possible so we find parametrical solution by perturbation technique. The result is shown in graph for different parameters. We notice that heat generation effects fluid velocity keeping in which of free convection which cools.
Keywords: Transient, Convection, MHD, Viscous, Porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911092 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O
Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli
Abstract:
In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.Keywords: Absorption refrigeration, COP, ejector, exergy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12751091 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.
Keywords: Physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8501090 Optimizing PelletPAVE™ Rubberized Asphalt Mix Design Using Gyratory Compaction and Volumetrics
Authors: H. Al-Baghli
Abstract:
In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high temperature rutting, and moisture induced raveling. PelletPAVE™ additive was selected as the preferred technology, since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work, using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.
Keywords: Modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461089 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance
Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani
Abstract:
This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.
Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448551088 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites
Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria
Abstract:
Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.
Keywords: Gamma irradiation, grapheme oxide, nanocomposites, PVDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191087 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB
Authors: Tapano Kumar Hotta, S P Venkateshan
Abstract:
Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.Keywords: Discrete heat source, mixed convection, natural convection, vertical channel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621086 Hydrogen Sensor Based on Surface Activated WO3 Films by Pd Nanoclusters
Authors: S.Fardindoost, A. Iraji Zad, S.M.Mahdavi
Abstract:
Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples- electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO3 by detection of Hydrogen below 1% at room temperature. Also variation of the electrical conductivity in the presence of diluted hydrogen revealed that response of samples depends rather strongly on the palladium configuration on the surface.Keywords: Electrolysis, Hydrogen sensing, Palladium, WO3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921085 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.
Keywords: Crack, critical flow, leak, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421084 Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley
Authors: L. Bouqbis, H.W. Koyro, M. C. Harrouni, S. Daoud, L. F. Z. Ainlhout, C. I. Kammann
Abstract:
The application of biochar to soils is becoming more and more common. Its application which is generally reported to improve the physical, chemical, and biological properties of soils, has an indirect effect on soil health and increased crop yields. However, many of the previous results are highly variable and dependent mainly on the initial soil properties, biochar characteristics, and production conditions. In this study, two biochars which are biochar II (BC II) derived from a blend of paper sludge and wheat husks and biochar 005 (BC 005) derived from sewage sludge with a KCl additive, are used, and the physical and chemical properties of BC II are characterized. To determine the potential impact of salt stress and toxic and volatile substances, the second part of this study focused on the effect biochars have on germination of salad (Lactuca sativa L.), barley (Hordeum vulgare), and cress (Lepidium sativum) respectively. Our results indicate that Biochar II showed some unique properties compared to the soil, such as high EC, high content of K, Na, Mg, and low content of heavy metals. Concerning salad and barley germination test, no negative effect of BC II and BC 005 was observed. However, a negative effect of BC 005 at 8% level was revealed. The test of the effect of volatile substances on germination of cress revealed a positive effect of BC II, while a negative effect was observed for BC 005. Moreover, the water holding capacities of biochar-sand mixtures increased with increasing biochar application. Collectively, BC II could be safely used for agriculture and could provide the potential for a better plant growth.Keywords: Biochar, phytotoxic tests, seedlings growth, water holding capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781083 MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems
Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh
Abstract:
The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.
Keywords: MinRoot, CMesh, NoC, Topology, Performance Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21271082 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System
Authors: Marina Kapsali, John S. Anagnostopoulos
Abstract:
Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.
Keywords: Electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10281081 A Refined Energy-Based Model for Friction-Stir Welding
Authors: Samir A. Emam, Ali El Domiaty
Abstract:
Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.
Keywords: Friction-stir welding, Energy, Aluminum Alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501080 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.
Keywords: Foamed concrete, oil palm ash, strength, interlocking block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13581079 Energy Analysis of Pressurized Solid Oxide Fuel Cell Combined Power Turbine
Authors: M. Ayazi, R. Karami, B. Kamkari
Abstract:
Solid oxide fuel cells have been considered in the last years as one of the most promising technologies for very highefficiency electric energy generation from hydrogen or other hydrocarbons, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. In the present study, a detailed thermodynamic analysis has been carried out. Mass and exergy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of combined cycle. Moreover, different sources of irreversibilities within the SOFC stack have been discussed and a parametric study conducted to evaluate the effect of temperature as well as pressure on SOFC irreversibilities and its performance. In this investigation methane and hydrogen have been used for fueling the SOFC stack and combustion chamber.
Keywords: SOFC, Energy, Power turbine, Irreversibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121078 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment
Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek
Abstract:
The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).
Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21881077 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.
Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26651076 Fabrication and Characterization of Sawdust Composite Biodegradable Film
Authors: M.Z. Norashikin, M.Z. Ibrahim
Abstract:
This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.Keywords: Sawdust, composite, film, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26051075 Daily and Seasonal Changes of Air Pollution in Kuwait
Authors: H. Ettouney, A. AL-Haddad, S. Saqer
Abstract:
This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.
Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24211074 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.
Keywords: Thermal simulation, Double Glass Wall, Velocity field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941073 Modeling the Influence of Socioeconomic and Land-Use Factors on Mode Choice: A Comparison of Riyadh, Saudi Arabia, and Melbourne, Australia
Authors: M. Alqhatani, S. Bajwa, S. Setunge
Abstract:
Metropolitan areas have suffered from traffic problems, which have steadily increased in many monocentric cities. Urban expansion, population growth, and road network development have resulted in a structural shift toward urban sprawl, increasing commuters’ dependence on private modes of transport. This paper aims to model the influence of socioeconomic and land-use factors on mode choice using a multinomial and nested logit model. Land-use patterns—such as residential, commercial, retail, educational and employment related—affect the choice of mode and destination in the short and medium term. Socioeconomic factors—such as age, gender, income, household size, and house type—also affect choice, while residential location is affected in the long term. Riyadh in Saudi Arabia and Melbourne in Australia were chosen as case studies. Riyadh is a car-dependent city with limited public transport, whereas Melbourne has good public transport but an increase in car dependence. Aggregate level land-use data and disaggregate level individual, household, and journey-to-work data are used to determine the effects of land use and socioeconomic factors on mode choice. The model results determined that urban sprawl is the main factor that affects mode choice, income, and house type.
Keywords: Socioeconomic, land use, mode choice, multinomial logit and nested logit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24461072 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.
Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22091071 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.
Keywords: Exciton, Refractive index change, Extinction ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131070 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
Authors: A. Yanik, U. Aldemir
Abstract:
This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.
Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764