Search results for: sustainable design
3437 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method
Authors: Majid Yazdandoust
Abstract:
This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21563436 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection
Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat
Abstract:
Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR. One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.
Keywords: Full wave analysis, ground penetrating radar, horn antenna design, landmine detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10133435 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.
Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5403434 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube
Authors: Cathal Merz, Gareth O’Donnell
Abstract:
Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.
Keywords: Buckling, coil reinforced thin-walled tubes, fracture, test method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7153433 Studies on Lucrative Process Layout for Medium Scale Industries
Authors: Balamurugan Baladhandapani, Ganesh Renganathan, V. R. Sanal Kumar
Abstract:
In this paper a comprehensive review on various factory layouts has been carried out for designing a lucrative process layout for medium scale industries. Industry data base reveals that the end product rejection rate is on the order of 10% amounting large profit loss. In order to avoid these rejection rates and to increase the quality product production an intermediate non-destructive testing facility (INDTF) has been recommended for increasing the overall profit. We observed through detailed case studies that while introducing INDTF to medium scale industries the expensive production process can be avoided to the defective products well before its final shape. Additionally, the defective products identified during the intermediate stage can be effectively utilized for other applications or recycling; thereby the overall wastage of the raw materials can be reduced and profit can be increased. We concluded that the prudent design of a factory layout through critical path method facilitating with INDTF will warrant profitable outcome.
Keywords: Intermediate Non-destructive testing, Medium scale industries, Process layout design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24003432 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38803431 Impedance Matching of Axial Mode Helical Antennas
Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco
Abstract:
In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.
Keywords: Antenna, helix, helical, axial mode, wireless power transfer, impedance matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9063430 Conventional Design and Simulation of an Urban Hybrid Bus
Authors: A. Khanipour, K. M. Ebrahimi, W. J. Seale
Abstract:
Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.Keywords: Hybrid Electric Vehicle, Hybridization, LEV, HEV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25263429 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV
Authors: Mohammed Qasim, Kyoung-Dae Kim
Abstract:
In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.Keywords: Artificial potential function, autonomy, collision avoidance, teleoperation, quadrotor, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19993428 Evaluation of Structural Behavior of Wide Sleepers on Asphalt Trackbed Due to Embedded Shear Keys
Authors: Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju, Woo Young Jung
Abstract:
Korea Train eXpress (KTX) is now being operated, which allows Korea being one of the countries that operates the high-speed rail system. The high-speed rail has its advantage of short time transportation of population and materials, which lead to many researches performed in this matter. In the case of high speed classical trackbed system, the maintenance and usability of gravel ballast system is costly. Recently, the concrete trackbed structure has been introduced as a replacement of classical trackbed system. In this case, the sleeper plays a critical role. Current study investigated to develop the track sleepers readily applicable to the top of the asphalt trackbed, as part of the trcakbed study utilizing the asphalt material. Among many possible shapes and design of sleepers, current study proposed two types of wide-sleepers according to the shear-key installation method. The structural behavior analysis and safety evaluation on each case was conducted using Korean design standard.
Keywords: Wide Sleepers, Asphalt, High-Speed Railway, Shear-key.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22003427 Stress Analysis of Hexagonal Element for Precast Concrete Pavements
Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek
Abstract:
While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.
Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7733426 Wind Tunnel for Aerodynamic Development Testing
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, F. A. Ribeiro
Abstract:
The study of the aerodynamics related to the improvement in the acting of airplanes and automobiles with the objective of being reduced the effect of the attrition of the air on structures, providing larger speeds and smaller consumption of fuel. The application of the knowledge of the aerodynamics not more limits to the aeronautical and automobile industries. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. Therefore, this research aims to design and construction of a wind tunnel to perform aerodynamic analysis in bodies of cars, seeking greater efficiency. For this, a methodology for wind tunnel type selection is designed to be built, taking into account the various existing configurations in which chose to build an open circuit tunnel, due to the lower complexity of construction and installation; operational simplicity and low cost. The guidelines for the project were teaching: the layer that limits study and analyze specimens with different geometries. For the variation of pressure in the test, section of a switched gauge used a pitot tube. Thus, it was possible to obtain quantitative and qualitative results, which proved to be satisfactory.Keywords: Wind tunnel, Aerodynamics, Air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13823425 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms
Authors: Amir Hossein Daei Sorkhabi, Bita Khazini
Abstract:
In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.
Keywords: Automatic Carwash, Dimension, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68353424 Finite Element Modelling of Log Wall Corner Joints
Authors: R. Kalantari, G. Hafeez
Abstract:
The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.
Keywords: dovetail joint, finite element modelling, log shear walls, standard joint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5103423 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12473422 A Simulation Study into the Use of Polymer Based Materials for Core Exoskeleton Applications
Authors: Matthew Dickinson
Abstract:
A core/trunk exoskeleton design has been produced that is aimed to assist the raise to stand motion. A 3D model was produced to examine the use of additive manufacturing as a core method for producing structural components for the exoskeleton presented. The two materials that were modelled for this simulation work were Polylatic acid (PLA) and polyethylene terephthalate with carbon (PET-C), and the central spinal cord of the design being Nitrile rubber. The aim of this study was to examine the use of 3D printed materials as the main skeletal structure to support the core of a human when moving raising from a resting position. The objective in this work was to identify if the 3D printable materials could be offered as an equivalent alternative to conventional more expensive materials, thus allow for greater access for production for home maintenance. A maximum load of lift force was calculated, and this was incrementally reduced to study the effects on the material. The results showed a total number of 8 simulations were run to study the core in conditions with no muscular support through to 90% of operational support. The study presents work in the form of a core/trunk exoskeleton that presents 3D printing as a possible alternative to conventional manufacturing.
Keywords: 3D printing, Exo-Skeleton, PLA, PETC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4483421 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System
Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres
Abstract:
One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19493420 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives Using Taguchi Experimental Design Methodology
Authors: P. Pimsee, C. Sablayrolles, P. de Caro, J. Guyomarch, N. Lesage, M. Montréjaud-Vignoles
Abstract:
The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 polycyclic aromatic hydrocarbons (PAHs) and derivates, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For Gasoline (SP95-E10) and Diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.
Keywords: Monitoring, PAHs, SBSE, water soluble fraction, Taguchi experimental design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19783419 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions
Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu
Abstract:
In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.Keywords: Ammonium chloride, Chevreul’s salt, copper, Factorial experimental design method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16853418 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel
Authors: N. Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.
Keywords: Drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9483417 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing
Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak
Abstract:
In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22773416 Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilizeda-Amylase Using Response Surface Methodology
Authors: G. Baskar, C. Muthukumaran, S. Renganathan
Abstract:
Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of cassava (Manihot esculenta) starch powder (of mesh 80/120) into glucose syrup by immobilized (using Polyacrylamide gel) a-amylase using central composite design. The experimental result on enzymatic hydrolysis of cassava starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of cassava starch by a-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p < 0.01). The optimum value of starch concentration temperature, time and enzyme concentration were found to be 4.5% (w/v), 45oC, 150 min, and 1% (w/v) enzyme. The maximum glucose yield at optimum condition was 5.17 mg/mL.Keywords: Enzymatic hydrolysis, Alcoholic beverage, Centralcomposite design, Polynomial model, glucose yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22443415 An Experimental Investigation on the Effect of Deep cold Rolling Parameters on Surface Roughness and Hardness of AISI 4140 Steel
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma
Abstract:
Deep cold rolling (DCR) is a cold working process, which easily produces a smooth and work-hardened surface by plastic deformation of surface irregularities. In the present study, the influence of main deep cold rolling process parameters on the surface roughness and the hardness of AISI 4140 steel were studied by using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in terms of identifying the predominant factor amongst the selected parameters, their order of significance and setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. It was found that the ball diameter, rolling force, initial surface roughness and number of tool passes are the most pronounced parameters, which have great effects on the work piece-s surface during the deep cold rolling process. A simple, inexpensive and newly developed DCR tool, with interchangeable collet for using different ball diameters, was used throughout the experimental work presented in this paper.
Keywords: Deep cold rolling, design of experiments, surface hardness, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21623414 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.
Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30683413 Evaluating Telepresence Experience and Game Players' Intention to Purchase Product Advertised in Advergame
Authors: Zuhal Hussein, Nabsiah Abdul Wahid, Norizan Saad
Abstract:
In line with changes of consumers modern lifestyle has call for the advertising strategy to change. This research is to find out how game with telepresence and product experience embedded in the computer game to affect users- intention to purchase. Game content developers are urging to consider of placing product message as part of game design strategy that can influence the game player-s intention to purchase. Experiment was carried out on two hundred and fifty undergraduate students who volunteered to participate in the Internet game playing activities. A factor analysis and correlation analysis was performed on items designed to measure telepresence, attitudes toward telepresence, and game player intention to purchase the product advertise in the game that respondents experienced. The results indicated that telepresence consist of interactive experience and product experience. The study also found that product experience is positively related to the game players- intention to purchase. The significance of product experience implies the usefulness of an interactive advertising in the game playing to attract players- intention to purchase the advertised product placed in the creative game design.
Keywords: Purchase intention, telepresence, product experience, interactive experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18513412 Optimization of Construction Practices: Implementation of Modern Work Modules to Increase Attractiveness for Employees
Authors: Robin Becker, Nane Roetmann, Manfred Helmus
Abstract:
Construction companies lack junior staff for construction management, with students lacking the appeal of the profession in particular. The conflict between the traditional job profile and the current desires of junior staff for contemporary and flexible working models must be resolved. Increasing flexibility is essential for the future viability of small and medium-sized enterprises. The implementation of modern work modules can help here. This paper presents the validation results of the developed work modules in construction practice.
Keywords: Modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, working time model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453411 A Feasibility and Implementation Model of Small-Scale Hydropower Development for Rural Electrification in South Africa: Design Chart Development
Authors: Gideon J. Bonthuys, Marco van Dijk, Jay N. Bhagwan
Abstract:
Small scale hydropower used to play a very important role in the provision of energy to urban and rural areas of South Africa. The national electricity grid, however, expanded and offered cheap, coal generated electricity and a large number of hydropower systems were decommissioned. Unfortunately, large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities due to the relatively low electricity demand within rural communities and the allocation of current expenditure on upgrading and constructing of new coal fired power stations. This necessitates the development of feasible alternative power generation technologies. A feasibility and implementation model was developed to assist in designing and financially evaluating small-scale hydropower (SSHP) plants. Several sites were identified using the model. The SSHP plants were designed for the selected sites and the designs for the different selected sites were priced using pricing models (civil, mechanical and electrical aspects). Following feasibility studies done on the designed and priced SSHP plants, a feasibility analysis was done and a design chart developed for future similar potential SSHP plant projects. The methodology followed in conducting the feasibility analysis for other potential sites consisted of developing cost and income/saving formulae, developing net present value (NPV) formulae, Capital Cost Comparison Ratio (CCCR) and levelised cost formulae for SSHP projects for the different types of plant installations. It included setting up a model for the development of a design chart for a SSHP, calculating the NPV, CCCR and levelised cost for the different scenarios within the model by varying different parameters within the developed formulae, setting up the design chart for the different scenarios within the model and analyzing and interpreting results. From the interpretation of the develop design charts for feasible SSHP in can be seen that turbine and distribution line cost are the major influences on the cost and feasibility of SSHP. High head, short transmission line and islanded mini-grid SSHP installations are the most feasible and that the levelised cost of SSHP is high for low power generation sites. The main conclusion from the study is that the levelised cost of SSHP projects indicate that the cost of SSHP for low energy generation is high compared to the levelised cost of grid connected electricity supply; however, the remoteness of SSHP for rural electrification and the cost of infrastructure to connect remote rural communities to the local or national electricity grid provides a low CCCR and renders SSHP for rural electrification feasible on this basis.Keywords: Feasibility, cost, rural electrification, small-scale hydropower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10903410 A Study of Semantic Analysis of LED Illustrated Traffic Directional Arrow in Different Style
Authors: Chia-Chen Wu, Chih-Fu Wu, Pey-Weng Lien, Kai-Chieh Lin
Abstract:
In the past, the most comprehensively adopted light source was incandescent light bulbs, but with the appearance of LED light sources, traditional light sources have been gradually replaced by LEDs because of its numerous superior characteristics. However, many of the standards do not apply to LEDs as the two light sources are characterized differently. This also intensifies the significance of studies on LEDs. As a Kansei design study investigating the visual glare produced by traffic arrows implemented with LEDs, this study conducted a semantic analysis on the styles of traffic arrows used in domestic and international occasions. The results will be able to reduce drivers’ misrecognition that results in the unsuccessful arrival at the destination, or in traffic accidents. This study started with a literature review and surveyed the status quo before conducting experiments that were divided in two parts. The first part involved a screening experiment of arrow samples, where cluster analysis was conducted to choose five representative samples of LED displays. The second part was a semantic experiment on the display of arrows using LEDs, where the five representative samples and the selected ten adjectives were incorporated. Analyzing the results with Quantification Theory Type I, it was found that among the composition of arrows, fletching was the most significant factor that influenced the adjectives. In contrast, a “no fletching” design was more abstract and vague. It lacked the ability to convey the intended message and might bear psychological negative connotation including “dangerous,” “forbidden,” and “unreliable.” The arrow design consisting of “> shaped fletching” was found to be more concrete and definite, showing positive connotation including “safe,” “cautious,” and “reliable.” When a stimulus was placed at a farther distance, the glare could be significantly reduced; moreover, the visual evaluation scores would be higher. On the contrary, if the fletching and the shaft had a similar proportion, looking at the stimuli caused higher evaluation at a closer distance. The above results will be able to be applied to the design of traffic arrows by conveying information definitely and rapidly. In addition, drivers’ safety could be enhanced by understanding the cause of glare and improving visual recognizability.
Keywords: LED, arrow, Kansei research, preferred imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583409 A 24-Bit, 8.1-MS/s D/A Converter for Audio Baseband Channel Applications
Authors: N. Ben Ameur, M. Loulou
Abstract:
This paper study the high-level modelling and design of delta-sigma (ΔΣ) noise shapers for audio Digital-to-Analog Converter (DAC) so as to eliminate the in-band Signal-to-Noise- Ratio (SNR) degradation that accompany one channel mismatch in audio signal. The converter combines a cascaded digital signal interpolation, a noise-shaping single loop delta-sigma modulator with a 5-bit quantizer resolution in the final stage. To reduce sensitivity of Digital-to-Analog Converter (DAC) nonlinearities of the last stage, a high pass second order Data Weighted Averaging (R2DWA) is introduced. This paper presents a MATLAB description modelling approach of the proposed DAC architecture with low distortion and swing suppression integrator designs. The ΔΣ Modulator design can be configured as a 3rd-order and allows 24-bit PCM at sampling rate of 64 kHz for Digital Video Disc (DVD) audio application. The modeling approach provides 139.38 dB of dynamic range for a 32 kHz signal band at -1.6 dBFS input signal level.Keywords: DVD-audio, DAC, Interpolator and Interpolation Filter, Single-Loop ΔΣ Modulation, R2DWA, Clock Jitter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26313408 Prospects in Waste Oil Shale Ash Sustainable Valorization
Authors: Olga Velts, Mai Uibu, Juha Kallas, Rein Kuusik
Abstract:
An innovative approach utilizing highly alkaline oil shale waste ash and carbon dioxide gas (CO2), associated with power production, as a resource for production of precipitated calcium carbonate (PCC) is introduced in this paper. The specifics and feasibility of the integrated ash valorization and CO2 sequestration process by indirect aqueous carbonation of lime-consisting ash were elaborated and the main parameters established. Detailed description of the formed precipitates was included. Complimentary carbonation experiments with commercial CaO fine powder were conducted for comparative characterization of the final products obtained on the basis of two different raw materials. Finally, the expected CO2 uptake was evaluated.Keywords: Calcium Carbonate, Carbon Dioxide Sequestration, Oil Shale Ash, Waste Valorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599