Search results for: environmental policy instruments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2294

Search results for: environmental policy instruments

194 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR based phylogenetic analysis was also carried out. The average operating and environmental parameters as well as specific nitrification rate of plant was investigated during the study. During the investigation the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with influent ammonia concentration of 31.69 and 24.47 mg/L. The influent flow rates (ML/Day) was 96.81 during period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit (amoA) gene, ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), specific nitrification rate, PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
193 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context

Authors: Shrikant Charhate, Gayatri Deshpande

Abstract:

Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.

Keywords: Connections, geotextile, permeable ACB, pavements, stone base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
192 The Performance of Natural Light by Roof Systems in Cultural Buildings

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.

Keywords: Natural lighting, roof lighting systems, natural lighting in museums, comfort lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
191 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania

Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani

Abstract:

As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.

Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
190 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition

Authors: Vitomir Struc, Nikola Pavesic

Abstract:

Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.

Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
189 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: Land suitability, machine learning, random forest, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
188 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
187 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant

Authors: Cigdem Safak Saglam

Abstract:

Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.

Keywords: Thermal power plant, lignite coal, pre-treatment, demineralization, electrodialysis, recycling, waste water, process water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
186 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: Apparent temperature, health, safety work, scaffoldings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
185 Feasibility Study of Mine Tailing’s Treatment by Acidithiobacillus thiooxidans DSM 26636

Authors: M. Gómez-Ramírez, A. Rivas-Castillo, I. Rodríguez-Pozos, R. A. Avalos-Zuñiga, N. G. Rojas-Avelizapa

Abstract:

Among the diverse types of pollutants produced by anthropogenic activities, metals represent a serious threat, due to their accumulation in ecosystems and their elevated toxicity. The mine tailings of abandoned mines contain high levels of metals such as arsenic (As), zinc (Zn), copper (Cu), and lead (Pb), which do not suffer any degradation process, they are accumulated in environment. Abandoned mine tailings potentially could contaminate rivers and aquifers representing a risk for human health due to their high metal content. In an attempt to remove the metals and thereby mitigate the environmental pollution, an environmentally friendly and economical method of bioremediation has been introduced. Bioleaching has been actively studied over the last several years, and it is one of the bioremediation solutions used to treat heavy metals contained in sewage sludge, sediment and contaminated soil. Acidithiobacillus thiooxidans, an extremely acidophilic, chemolithoautotrophic, gram-negative, rod shaped microorganism, which is typically related to Cu mining operations (bioleaching), has been well studied for industrial applications. The sulfuric acid produced plays a major role in bioleaching. Specifically, Acidithiobacillus thiooxidans strain DSM 26636 has been able to leach Al, Ni, V, Fe, Mg, Si, and Ni contained in slags from coal combustion wastes. The present study reports the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in two different mine tailing samples (MT1 and MT2). It was observed that Al, Fe, and Mn were removed in 36.3±1.7, 191.2±1.6, and 4.5±0.2 mg/kg for MT1, and in 74.5±0.3, 208.3±0.5, and 20.9±0.1 for MT2. Besides, < 1.5 mg/kg of Au and Ru were also bioleached from MT1; in MT2, bioleaching of Zn was observed at 55.7±1.3 mg/kg, besides removal of < 1.5 mg/kg was observed for As, Ir, Li, and 0.6 for Os in this residue. These results show the potential of strain DSM 26636 for the bioleaching of metals that came from different mine tailings.

Keywords: A. thiooxidans, bioleaching, metals, mine tailings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
184 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
183 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
182 Innovative Waste Management Practices in Remote Areas

Authors: Dolores Hidalgo, Jesús M. Martín-Marroquín, Francisco Corona

Abstract:

Municipal waste consist of a variety of items that are everyday discarded by the population. They are usually collected by municipalities and include waste generated by households, commercial activities (local shops) and public buildings. The composition of municipal waste varies greatly from place to place, being mostly related to levels and patterns of consumption, rates of urbanization, lifestyles, and local or national waste management practices. Each year, a huge amount of resources is consumed in the EU, and according to that, also a huge amount of waste is produced. The environmental problems derived from the management and processing of these waste streams are well known, and include impacts on land, water and air. The situation in remote areas is even worst. Difficult access when climatic conditions are adverse, remoteness of centralized municipal treatment systems or dispersion of the population, are all factors that make remote areas a real municipal waste treatment challenge. Furthermore, the scope of the problem increases significantly because the total lack of awareness of the existing risks in this area together with the poor implementation of advanced culture on waste minimization and recycling responsibly. The aim of this work is to analyze the existing situation in remote areas in reference to the production of municipal waste and evaluate the efficiency of different management alternatives. Ideas for improving waste management in remote areas include, for example: the implementation of self-management systems for the organic fraction; establish door-to-door collection models; promote small-scale treatment facilities or adjust the rates of waste generation thereof.

Keywords: Door to door collection, islands, isolated areas, municipal waste, remote areas, rural communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
181 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: Automobiles, welding, corrosion, lap joints, Micro XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
180 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).

All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.

Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.

The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: Polymer packaging, life cycle assessment, resource efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4490
179 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
178 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils

Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon

Abstract:

The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.

Keywords: Compatibility, Rancimat, natural ester, vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
177 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, ceria, gold catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
176 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
175 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Authors: Chee Teck Phua, Gaëlle Lissorgues

Abstract:

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
174 Evaluation of Underground Water Flow into Tabriz Metro Tunnel First Line by Hydro-Mechanical Coupling Analysis

Authors: L. Nikakhtar, S. Zare

Abstract:

One of the main practical difficulties attended with tunnel construction is related to underground water. Uncontrolled water behavior may cause extra loads on the lining, mechanical instability, and unfavorable environmental problems. Estimating underground water inflow rate to the tunnels is a complex skill. The common calculation methods are: empirical methods, analytical solutions, numerical solutions based on the equivalent continuous porous media. In this research the rate of underground water inflow to the Tabriz metro first line tunnel has been investigated by numerical finite difference method using FLAC2D software. Comparing results of Heuer analytical method and numerical simulation showed good agreement with each other. Fully coupled and one-way coupled hydro mechanical states as well as water-free conditions in the soil around the tunnel are used in numerical models and these models have been applied to evaluate the loading value on the tunnel support system. Results showed that the fully coupled hydro mechanical analysis estimated more axial forces, moments and shear forces in linings, so this type of analysis is more conservative and reliable method for design of tunnel lining system. As sensitivity analysis, inflow water rates into the tunnel were evaluated in different soil permeability, underground water levels and depths of the tunnel. Result demonstrated that water level in constant depth of the tunnel is more sensitive factor for water inflow rate to the tunnel in comparison of other parameters investigated in the sensitivity analysis.

Keywords: Coupled hydro mechanical analysis, FLAC2D, Tabriz Metro, inflow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
173 Study of Influencing Factors of Shrinking Cities Based On Factor Analysis – The Example of Halle, Germany

Authors: Fang Yao, Minglei Chen

Abstract:

City shrinkage is one of the thorny problems that many European cities have to face with nowadays. It is mainly expressed as the decrease of population in these cities. Eastern Germany is one of the pioneers of European shrinking cities with long shrinking history. The paper selects one representative shrinking city Halle (Saale) in eastern Germany as research objective, collecting and investigating nearly 20 years (1993-2010) municipal data after the reunification of Germany. These data based on five dimensions, which are demographic, economic, social, spatial and environmental and total 16 eligible variables. Factor Analysis is used to deal with these variables in order to assess the most important factors affecting shrinking Halle. The results show that there are three main factors determine the shrinkage of Halle, respectively named “demographical and economical factor”, “social stability factor”, and “city vitality factor”. The three factors act at different time period of Halle’s shrinkage: from 1993 to 1997 the demographical and economical factor played an important role; from 1997 to 2004 the social stability factor is significant to city shrinkage; since 2005 city vitality factor determines the shrinkage of Halle. In recent years, the shrinkage in Halle mitigates that shows the sign of growing population. Thus the city Halle should focus on attaching more importance on the city vitality factor to prevent the city from shrinkage. Meanwhile, the city should possess a positive perspective to shift the growth-oriented development to tap the potential of shrinking cities. This method is expected to apply to further research and other shrinking cities

Keywords: Demography, Factor analysis, Halle, Shrinking cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
172 Investigation of Heavy Metals Uptake by Vegetable Crops from Metal-Contaminated Soil

Authors: Azita Behbahaninia, Seid Ahmad Mirbagheri

Abstract:

The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban areas of developing countries. The reuse of nutrients and organic matter in treated wastewater and sewage sludge via land application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. Long-term use of sewage sludge, heavy metals can accumulate to phytotoxic levels and results in reduced plants growth and/or enhanced metal concentrations in plants, which consumed by animals then enter the food chain. In this research, the amount of heavy metals was measured in plants irrigated with wastewater and sludge application. For this purpose, three pilots were made in a Shush treatment plant in south of Tehran. Three plants species, spinach, lettuce and radish were selected and planted in the pilots.First pilot was irrigated just with wastewater of treatment plant and second pilot was irrigated with wastewater and sludge application .Third pilot was irrigated with simulated heavy metals solution equal 50 years of irrigation. The results indicate that the average of amount of heavy metals Pb, Cd in three plant species in first pilot were lower than permissible limits .In second pilot, Cadmium accumulations are high in three species plants and more than the standard limits. Concentration of Cd , Pb have exceed their permitted limits in plants in third pilot . It was concluded that the use of wastewater and sludge application in agricultural lands enriched soils with heavy metals to concentrations that may pose potential environmental and health risks in the long-term.

Keywords: Soil, contaminate, heavy metals, wastewater, sludge, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
171 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: Direct steam generation, parabolic trough collectors, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
170 Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic

Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman

Abstract:

An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.

Keywords: Advanced Driver Assistance Systems, Eye-Tracking, Hazard Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
169 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties

Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino

Abstract:

Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.

Keywords: Agro-industrial wastewater, broccoli, long-term re-use, tomato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
168 Turfgrass Quality Changes from Season to Season on Perennial Ryegrass (lolium perenne l.) Genotypes Collected from Natural Flora

Authors: Mehmet Ali Avcı, Abdullah Özköse, Ahmet Tamkoç

Abstract:

Perennial ryegrass (Lolium perenne L.) plants are cultivated for lawn constitution and as forage plants. Considerable number of perennial ryegrass genotypes are present in the flora of our country and they present substantial was performed based on a Project supported bu TUBITAK (Project numver : 106O159) and perannial ryegrass genotypes from 8 provinces were collected during 2006. Seeds of perennial ryegrass were collected from 48 different locations. Populations of turfgrass seeds in flowerpots to be 20 and 1 cm deep greenhouse were sown in three replications at 07.07.2007.Then the growth of turfgrass seedlings in the greenhouse in pots showed sufficiently separated from the plants were planted in each population. Plants planted in the garden of the observation scale of 1-9 was evaluated by the quality, 1 = the weakest / worst, 6 = acceptable and 9 = superior or considered as an ideal. Essentially only recognized in assessing the quality of the color of grass, but the color, density, uniformity, texture (texture), illness or environmental stresses are evaluated as a combination reaction. Turfgrass quality 15.11.2007, 19.03.2008, 27.05.2008, 27.11.2008, 07.03.2009 and 02.06.2009 have been 6 times to be in order. Observations made regarding the quality of grass; 3 years according to seasonal environments turf quality genotypes belonging to 14 different populations were found to be 7.5 and above are reserved for future use in breeding works.The number of genotypes belonging to 41 populations in terms of turfgrass quality was determined as 7.9 of 3 year average seasonal. Argıthan between Doğanhisar (Konya) is located 38.09 latitude and 31.40 longitude, altitude 1158 m in the set that population numbered 41.

Keywords: Genotype, Perennial ryegrass, Turfgrass quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
167 Capacity Building for Hazmat Transport Emergency Preparedness: 'Hotspot Impact Zone' Mapping from Flammable and Toxic Releases

Authors: U K Chakrabarti, Jigisha Parikh

Abstract:

Hazardous Material transportation by road is coupled with inherent risk of accidents causing loss of lives, grievous injuries, property losses and environmental damages. The most common type of hazmat road accident happens to be the releases (78%) of hazardous substances, followed by fires (28%), explosions (14%) and vapour/ gas clouds (6 %.). The paper is discussing initially the probable 'Impact Zones' likely to be caused by one flammable (LPG) and one toxic (ethylene oxide) chemicals being transported through a sizable segment of a State Highway connecting three notified Industrial zones in Surat district in Western India housing 26 MAH industrial units. Three 'hotspots' were identified along the highway segment depending on the particular chemical traffic and the population distribution within 500 meters on either sides. The thermal radiation and explosion overpressure have been calculated for LPG / Ethylene Oxide BLEVE scenarios along with toxic release scenario for ethylene oxide. Besides, the dispersion calculations for ethylene oxide toxic release have been made for each 'hotspot' location and the impact zones have been mapped for the LOC concentrations. Subsequently, the maximum Initial Isolation and the protective zones were calculated based on ERPG-3 and ERPG-2 values of ethylene oxide respectively which are estimated taking the worst case scenario under worst weather conditions. The data analysis will be helpful to the local administration in capacity building with respect to rescue / evacuation and medical preparedness and quantitative inputs to augment the District Offsite Emergency Plan document.

Keywords: Hotspot, Ethylene Oxide, LPG, MAH (MajorAccident Hazard).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
166 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Authors: Jiahua Zhang, Qing Chang, Fengmei Yao

Abstract:

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Keywords: Grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
165 Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands

Authors: Marinos Xagoraris, Iliada K. Lappa, Charalambos Kanakis, Dimitra Daferera, Christina Papadopoulou, Georgios Sourounis, Charilaos Giotis, Pavlos Bouchagier, Christos S. Pappas, Petros A. Tarantilis, Efstathia Skotti

Abstract:

The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework.

Keywords: Antioxidant activity, grape skin, phenolic compounds, waste recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502