Search results for: rough sets
518 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218517 The Effect of Strength Training and Consumption of Glutamine Supplement on GH/IGF1 Axis
Authors: Alireza Barari
Abstract:
Physical activity and diet are factors that influence the body's structure. The purpose of this study was to compare the effects of four weeks of resistance training, and glutamine supplement consumption on growth hormone (GH), and Insulin-like growth factor 1 (IGF-1) Axis. 40 amateur male bodybuilders, participated in this study. They were randomly divided into four equal groups, Resistance (R), Glutamine (G), Resistance with Glutamine (RG), and Control (C). The R group was assigned to a four week resistance training program, three times/week, three sets of 10 exercises with 6-10 repetitions, at the 80-95% 1RM (One Repetition Maximum), with 120 seconds rest between sets), G group is consuming l-glutamine (0.1 g/kg-1/day-1), RG group resistance training with consuming L-glutamine, and C group continued their normal lifestyle without exercise training. GH, IGF1, IGFBP-III plasma levels were measured before and after the protocol. One-way ANOVA indicated significant change in GH, IGF, and IGFBP-III between the four groups, and the Tukey test demonstrated significant increase in GH, IGF1, IGFBP-III plasma levels in R, and RG group. Based upon these findings, we concluded that resistance training at 80-95% 1RM intensity, and resistance training along with oral glutamine shows significantly increase secretion of GH, IGF-1, and IGFBP-III in amateur males, but the addition of oral glutamine to the exercise program did not show significant difference in GH, IGF-1, and IGFBP-III.
Keywords: Strength, glutamine, growth hormone, insulin-like growth factor 1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050516 The Spanning Laceability of k-ary n-cubes when k is Even
Authors: Yuan-Kang Shih, Shu-Li Chang, Shin-Shin Kao
Abstract:
Qk n has been shown as an alternative to the hypercube family. For any even integer k ≥ 4 and any integer n ≥ 2, Qk n is a bipartite graph. In this paper, we will prove that given any pair of vertices, w and b, from different partite sets of Qk n, there exist 2n internally disjoint paths between w and b, denoted by {Pi | 0 ≤ i ≤ 2n-1}, such that 2n-1 i=0 Pi covers all vertices of Qk n. The result is optimal since each vertex of Qk n has exactly 2n neighbors.Keywords: container, Hamiltonian, k-ary n-cube, m*-connected.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537515 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.
Keywords: Concrete bridges, deterioration, Markov chains, probability matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440514 How to Connect User Research and not so Forthcoming Technology Scenarios – The Extended Home Environment Case Study
Authors: E. Guercio, A. Marcengo, A. Rapp
Abstract:
This paper draws a methodological framework adopted within an internal Telecomitalia project aimed to identify, on a user centred base, the potential interest towards a technological scenario aimed to extend on a personal bubble the typical communication and media fruition home environment. The problem is that involving user in the early stage of the development of such disruptive technology scenario asking users opinions on something that users actually do not manage even in a rough manner could lead to wrong or distorted results. For that reason we chose an approach that indirectly aim to understand users hidden needs in order to obtain a meaningful picture of the possible interest for a technological proposition non yet easily understandable.
Keywords: Personas, focus groups, scenarios, extended home environment, telecommunication, media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591513 Definable Subsets in Covering Approximation Spaces
Authors: Xun Ge, Zhaowen Li
Abstract:
Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximation spaces. This paper investigates covering approximation spaces endowed ten covering approximation operators respectively, and establishes some relations among definable subsets, inner definable subsets and outer definable subsets in covering approximation spaces, which deepens some results on definable subsets in approximation spaces.Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286512 Reducing the Need for Multi-Input Multi-Output in Multi-Beam Base Transceiver Station Antennas Using Orthogonally-Polarized Feeds with an Arbitrary Number of Ports
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A multi-beam BTS (Base Transceiver Station) antenna has been developed using dual parabolic cylindrical reflectors. The ±45° polarization feeds are used in spatial diversity MIMO (Multi-Input Multi-Output). They can be replaced by single-port orthogonally polarized feeds. Then, with two sets of beams generated above each other, the ± 45° polarization ports of any conventional transceiver can be connected to two of these beam sets. Thus, with two-port transceivers, the system will be equivalent to 4x4 MIMO, instead of 2x2. Radio Frequency (RF) power combiners/splitters can also be used to combine the multiple beams into a single beam or any arbitrary number of beams/ports. The gain of the combined-beam will be more than 20-24 dBi instead of 17-18 dBi of conventional wide-beam antennas. Furthermore, the gain of the combined beam will be high over the whole beam angle. Moreover, the users will always be close to the peak gain value of the combined beam regardless of their location within the combined beam angle. The frequency bands of all the combined beams are adjusted such that they all have the same frequency band. Different configurations of RF power splitter/combiners can be used to provide any arbitrary number of beams/ports according to the requirements of any existing base station configuration.
Keywords: 5G mobile communications, BTS antennas, MIMO, orthogonally polarized antennas, multi-beam antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705511 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568510 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting: The WICKED Method
Authors: S. Impey, D. Berry, S. Furtado, M. Galvin, L. Grogan, O. Hardiman, L. Hederman, M. Heverin, V. Wade, L. Douris, D. O'Sullivan, G. Stephens
Abstract:
Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.
Keywords: Healthcare, knowledge acquisition, maximal data sets, action design science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543509 Market Feasibility for New Brand Coffee House: The Case Study of Thailand
Authors: Pongsiri K.
Abstract:
This research aimed to study the market feasibility for new brand coffee house, the case study of Thailand.. This study is a mixed methods research combining quantitative research and the qualitative research. Primary data 350 sets of questionnaires were distributed, and the high quality completed questionnaires of 320 sets returned. Research samples are identified as customers’ of Hi-end department stores in Thailand. The sources of secondary data were critical selected from highly reliable sources, both from public and private sectors. The results were used to classify the customer group into two main groups, the younger than 25 and the older than 25years old. Results of the younger group, are give priority to the dimension of coffee house and its services dimension more than others, then branding dimension and the product dimension respectively. On the other hand, the older group give the difference result as they rate the important of the branding, coffee house and its services, then the product respectively. Coffee consuming is not just the trend but it has become part of people lifestyle. And the new cultures also created by the wise businessman. Coffee was long produced and consumed in Thailand. But it is surprisingly the hi-end brand coffee houses in Thai market are mostly imported brands. The café business possibility for Thai brand coffee house in Thai market were discussed in the paper.
Keywords: Coffee House, Café, Coffee Consuming and new entry branding, market feasibility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14044508 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.
Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484507 A new Adaptive Approach for Histogram based Mouth Segmentation
Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.Keywords: Feature extraction, Segmentation, Image processing, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788506 Fuzzy T-Neighborhood Groups Acting on Sets
Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik
Abstract:
In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304505 Investigation on Feature Extraction and Classification of Medical Images
Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012504 Computing Entropy for Ortholog Detection
Authors: Hsing-Kuo Pao, John Case
Abstract:
Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.
Keywords: compression, decision tree, entropy, ortholog, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827503 Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim
Authors: Barenten Suciu
Abstract:
In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.
Keywords: Built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936502 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916501 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective
Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan
Abstract:
In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.
Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903500 New Wavelet Indices to Assess Muscle Fatigue during Dynamic Contractions
Authors: González-Izal M., Rodríguez-Carreño I, Mallor-Giménez F, Malanda A, Izquierdo M
Abstract:
The purpose of this study was to evaluate and compare new indices based on the discrete wavelet transform with another spectral parameters proposed in the literature as mean average voltage, median frequency and ratios between spectral moments applied to estimate acute exercise-induced changes in power output, i.e., to assess peripheral muscle fatigue during a dynamic fatiguing protocol. 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. Surface electromyography was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were compared to detect peripheral muscle fatigue. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. The new wavelet indices achieved the best results in Pearson correlation coefficients with power output changes during acute dynamic contractions. Their regressions were significantly different from MAV and Fmed. On the other hand, they showed the highest robustness in presence of additive white gaussian noise for different signal to noise ratios (SNRs). Therefore, peripheral impairments assessed by sEMG wavelet indices may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.Keywords: Median Frequency, EMG, wavelet transform, muscle fatigue
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867499 Detection of Moving Images Using Neural Network
Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh
Abstract:
Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.
Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149498 Implementation of Virtual Reality in the Conceptual Design of a Tractor Trailer
Authors: Arunesh Chandra, Pankaj Chandna
Abstract:
Virtual reality (VR) is a rapidly emerging computer interface that attempts to immerse the user completely within an experimental recreation; thereby, greatly enhancing the overall impact and providing a much more intuitive link between the computer and the human participants. The main objective of this study is to design tractor trailer capable of meeting the customers’ requirements and suitable for rough conditions to be used in combination with a farm tractor in India. The final concept is capable of providing arrangements for attaching the trailer to the tractor easily by pickup hitch, stronger and lighter supporting frame, option of spare tyre etc. Furthermore, the resulting product design can be sent via the Internet to customers for comments or marketing purposes. The virtual prototyping (VP) system therefore facilitates advanced product design and helps reduce product development time and cost significantly.
Keywords: Conceptual design, Trailer, Virtual prototyping, Virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216497 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition
Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen
Abstract:
An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842496 Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well
Authors: Zahra Ghadampour, Gholamreza Rakhshandehroo
Abstract:
A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.Keywords: Neural networks, groundwater depth, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516495 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583494 Weakly Generalized Closed Map
Authors: R. Parimelazhagan, N. Nagaveni
Abstract:
In this paper we introduce a new class of mg-continuous mapping and studied some of its basic properties.We obtain some characterizations of such functions. Moreover we define sub minimal structure and further study certain properties of mg-closed sets.
Keywords: M-structure, mg-continuous mapping, minimal structure, mg T2 space, sub minimal structure, T12 space, mg-compact set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536493 Overloading Scheme for Cellular DS-CDMA using Quasi-Orthogonal Sequences and Iterative Interference Cancellation Receiver
Authors: Preetam Kumar, Saswat Chakrabarti
Abstract:
Overloading is a technique to accommodate more number of users than the spreading factor N. This is a bandwidth efficient scheme to increase the number users in a fixed bandwidth. One of the efficient schemes to overload a CDMA system is to use two sets of orthogonal signal waveforms (O/O). The first set is assigned to the N users and the second set is assigned to the additional M users. An iterative interference cancellation technique is used to cancel interference between the two sets of users. In this paper, the performance of an overloading scheme in which the first N users are assigned Walsh-Hadamard orthogonal codes and extra users are assigned the same WH codes but overlaid by a fixed (quasi) bent sequence [11] is evaluated. This particular scheme is called Quasi- Orthogonal Sequence (QOS) O/O scheme, which is a part of cdma2000 standard [12] to provide overloading in the downlink using single user detector. QOS scheme are balance O/O scheme, where the correlation between any set-1 and set-2 users are equalized. The allowable overload of this scheme is investigated in the uplink on an AWGN and Rayleigh fading channels, so that the uncoded performance with iterative multistage interference cancellation detector remains close to the single user bound. It is shown that this scheme provides 19% and 11% overloading with SDIC technique for N= 16 and 64 respectively, with an SNR degradation of less than 0.35 dB as compared to single user bound at a BER of 0.00001. But on a Rayleigh fading channel, the channel overloading is 45% (29 extra users) at a BER of 0.0005, with an SNR degradation of about 1 dB as compared to single user performance for N=64. This is a significant amount of channel overloading on a Rayleigh fading channel.Keywords: DS-CDMA, Iterative Interference CancellationOrthogonal codes, Overloading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716492 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines
Authors: A. Perolini
Abstract:
Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597491 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967490 On Generalized Exponential Fuzzy Entropy
Authors: Rajkumar Verma, Bhu Dev Sharma
Abstract:
In the present communication, the existing measures of fuzzy entropy are reviewed. A generalized parametric exponential fuzzy entropy is defined.Our study of the four essential and some other properties of the proposed measure, clearly establishes the validity of the measure as an entropy.Keywords: fuzzy sets, fuzzy entropy, exponential entropy, exponential fuzzy entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2855489 Numerical Simulation of the Kurtosis Effect on the EHL Problem
Authors: S. Gao, S. Srirattayawong
Abstract:
In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.
Keywords: CFD, EHL, Kurtosis, Surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180