Search results for: multi-dimensional principal component analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9383

Search results for: multi-dimensional principal component analysis

9203 A Comparative Analysis of Fuzzy, Neuro-Fuzzy and Fuzzy-GA Based Approaches for Software Reusability Evaluation

Authors: Parvinder Singh Sandhu, Dalwinder Singh Salaria, Hardeep Singh

Abstract:

Software Reusability is primary attribute of software quality. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. In this paper, we have devised the framework of metrics that uses McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component as input attributes and calculated reusability of the software component. Here, comparative analysis of the fuzzy, Neuro-fuzzy and Fuzzy-GA approaches is performed to evaluate the reusability of software components and Fuzzy-GA results outperform the other used approaches. The developed reusability model has produced high precision results as expected by the human experts.

Keywords: Software Reusability, Software Metrics, Neural Networks, Genetic Algorithm, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
9202 Professional Management on Ecotourism and Conservation to Ensure the Future of Komodo National Park

Authors: Daningsih Sulaeman, Achmad Sjarmidi, Djoko T. Iskandar

Abstract:

Komodo National Park can be associated with the implementation of ecotourism program. The result of Principal Components Analysis is synthesized, tested, and compared to the basic concept of ecotourism with some field adjustments. Principal aspects of professional management should involve ecotourism and wildlife welfare. The awareness should be focused on the future of the Natural Park as 7th Wonder Natural Heritage and its wildlife components, free from human wastes and beneficial to wildlife and local people. According to perceptions and expectations of visitors from various results of tourism programs, the visitor’s perceptions showed that the tourism management in Komodo National Park should pay more attention to visitor's satisfaction and expectation and gives positive impact directly to the ecosystem sustainability, local community and transparency to the conservation program.

Keywords: 7th Wonders of Nature, Ecotourism, Komodo dragon, visitor’s perceptions, wildlife management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
9201 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
9200 Long-term Irrigation with Dairy Factory Wastewater Influences Soil Quality

Authors: Yen-Yiu Liu, Richard J. Haynes

Abstract:

The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.

Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
9199 Long- term Irrigation with Dairy Factory Wastewater Influences Soil Quality

Authors: Yen-Yiu Liu, Richard J. Haynes

Abstract:

The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.

Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
9198 Exploring Life Meaningfulness and Its Psychosocial Correlates among Recovering Substance Users – An Indian Perspective

Authors: Fouzia Alsabah Shaikh, Anjali Ghosh

Abstract:

The present study was done primarily to address two major research gaps: firstly, development of an empirical measure of life meaningfulness for substance users and secondly, to determine the psychosocial determinants of life meaningfulness among the substance users. The study is classified into two phases: the first phase which dealt with development of Life Meaningfulness Scale and the second phase which examined the relationship between life meaningfulness and social support, abstinence self efficacy and depression. Both qualitative and quantitative approaches were used for framing items. A Principal Component Analysis yielded three components: Overall Goal Directedness, Striving for healthy lifestyle and Concern for loved ones which collectively accounted for 42.06% of the total variance. The scale and its subscales were also found to be highly reliable. Multiple regression analyses in the second phase of the study revealed that social support and abstinence self efficacy significantly predicted life meaningfulness among 48 recovering inmates of a de-addiction center while level of depression failed to predict life meaningfulness.

Keywords: Perceived Life meaningfulness, Social Support, Abstinence Self Efficacy, Depression, Substance Use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
9197 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
9196 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma

Abstract:

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

Keywords: Assamese, Recognition, LPC, Spectral, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
9195 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
9194 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Authors: Sasadhar Bera, Indrajit Mukherjee

Abstract:

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.

Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
9193 Redefining Field Experiences: Virtual Environments in Teacher Education

Authors: Laurie Mullen, Jayne Beilke, Nancy Brooks

Abstract:

The explosion of interest in online gaming and virtual worlds is leading many universities to investigate possible educational applications of the new environments. In this paper we explore the possibilities of 3D online worlds for teacher education, particularly the field experience component. Drawing upon two pedagogical examples, we suggest that virtual simulations may, with certain limitations, create safe spaces that allow preservice teachers to adopt alternate identities and interact safely with the “other." In so doing they may become aware of the constructed nature of social categories and gain the essential pedagogical skill of perspective-taking. We suggest that, ultimately, the ability to be the principal creators of themselves in virtual environments can increase their ability to do the same in the real world.

Keywords: field experience, pedagogy, simulation, teacher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
9192 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
9191 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: Concrete, FEM, pavement, sensitivity, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
9190 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: Climate, infrastructure degradation, HVAC, neighborhood component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
9189 Assessment of Time-Lapse in Visible and Thermal Face Recognition

Authors: Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh

Abstract:

Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.

Keywords: Infrared Face recognition, Time-lapse, Zernike moment invariants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
9188 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: Fermented milk, volatile compounds, preference, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
9187 Sensitivity Analysis in Power Systems Reliability Evaluation

Authors: A.R Alesaadi, M. Nafar, A.H. Gheisari

Abstract:

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.

Keywords: sensitivity analysis, reliability evaluation, powersystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
9186 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey

Authors: Lee Suan Chua

Abstract:

This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90oC for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration was also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the score plot clearly shows that the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90oC.

Keywords: Honey colour, hydroxylmethylfurfural, thermal treatment, Tualang honey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
9185 Depression and Its Effects on a Cognitive Performance Test

Authors: C. Noi-Okwei

Abstract:

In this study, participants with adjustment disorder with depressed mood (aged 18-54 years) with mild depression (N=18), severe depression (N=12) were compared with healthy controls (N=20) on the Multidimensional Aptitude Battery (MAB) a cognitive performance test. Using One Way Analysis of Variance and Matched Sample t-test. The results of the analysis shows that severely depressed participants performed poorly on the cognitive performance test relative to controls, however there were no significant differences on the cognitive performance test scores between the severely depressed and the mildly depressed. In addition, performance on the non-verbal performance subtest was poorer than that of the verbal subtest, suggesting that depression affects the executive functions of the person.

Keywords: adjustment disorder, cognitive performance test, Depression,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4441
9184 Primary School Principals in Turkey: Their Working Conditions and Professional Profiles

Authors: Ali I. Gumuseli

Abstract:

In order to achieve effective management, the professional and individual characteristics and qualifications of school principals and their system-oriented perception is very important. Therefore, it is necessary to conduct regular comprehensive studies into the profiles of school principals. The purpose of this study is to determine the perceptions of primary school principals about their working conditions and to present their professional profiles. The questionnaire was distributed to 1475 respondents and 1428 valid questionnaires were evaluated. The results of the research were discussed and compared to other similar studies.Keywordseducation, education management, primary school principal, principals profiles

Keywords: education, education management, primary school principal, principals profiles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
9183 Measuring Principal and Teacher Cultural Competency: A Needs Assessment of Three Proximate PreK-5 Schools

Authors: Teresa Caswell

Abstract:

Throughout the United States and within a myriad of demographic contexts, students of color experience the results of systemic inequities as an academic outcome. These disparities continue despite the increased resources provided to students and ongoing instruction-focused professional learning received by teachers. We postulated that lower levels of educator cultural competency are an underlying factor of why resource and instructional interventions are less effective than desired. Before implementing any type of intervention, however, cultural competency needed to be confirmed as a factor in schools demonstrating academic disparities between racial subgroups. A needs assessment was designed to measure levels of individual beliefs, including cultural competency, in both principals and teachers at three neighboring schools verified to have academic disparities. The resulting mixed method study utilized the Optimal Theory Applied to Identity Development (OTAID) model to measure cultural competency quantitatively, through self-identity inventory survey items, with teachers and qualitatively, through one-on-one interviews, with each school’s principal. A joint display was utilized to see combined data within and across school contexts. Each school was confirmed to have misalignments between principal and teacher levels of cultural competency beliefs while also indicating that a number of participants in the self-identity inventory survey may have intentionally skipped items referencing the term oppression. Additional use of the OTAID model and self-identity inventory in future research and across contexts is needed to determine transferability and dependability as cultural competency measures.

Keywords: Cultural competency, identity development, mixed method analysis, needs assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177
9182 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method

Authors: C. Ardil

Abstract:

Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.

Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
9181 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs

Authors: Kyogun Chang, Yoon Bok Lee

Abstract:

Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.

Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
9180 Multi-Criteria Spatial Analysis for the Localization of Production Structures. Analytic Hierarchy Process and Geographical Information Systems in the Case of Expanding an Industrial Area

Authors: Gianluigi De Mare, Pierluigi Morano, Antonio Nesticò

Abstract:

Among the numerous economic evaluation techniques currently available, Multi-criteria Spatial Analysis lends itself to solving localization problems of property complexes and, in particular, production plants. The methodology involves the use of Geographical Information Systems (GIS) and the mapping overlay technique, which overlaps the different information layers of a territory in order to obtain an overview of the parameters that characterize it. This first phase is used to detect possible settlement surfaces of a new agglomeration, subsequently selected through Analytic Hierarchy Process (AHP), so as to choose the best alternative. The result ensures the synthesis of a multidimensional profile that expresses both the quantitative and qualitative effects. Each criterion can be given a different weight.

Keywords: Multi-criteria Spatial Analysis, Analytic Hierarchy Process, Geographical Information Systems, localization of industrial areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
9179 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
9178 Prediction of Reusability of Object Oriented Software Systems using Clustering Approach

Authors: Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand

Abstract:

In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.

Keywords: CK-Metric, Desicion Tree, Kmeans, Reusability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
9177 GeoSEMA: A Modelling Platform, Emerging “GeoSpatial-based Evolutionary and Mobile Agents“

Authors: Mohamed Dbouk, Ihab Sbeity

Abstract:

Spatial and mobile computing evolves. This paper describes a smart modeling platform called “GeoSEMA". This approach tends to model multidimensional GeoSpatial Evolutionary and Mobile Agents. Instead of 3D and location-based issues, there are some other dimensions that may characterize spatial agents, e.g. discrete-continuous time, agent behaviors. GeoSEMA is seen as a devoted design pattern motivating temporal geographic-based applications; it is a firm foundation for multipurpose and multidimensional special-based applications. It deals with multipurpose smart objects (buildings, shapes, missiles, etc.) by stimulating geospatial agents. Formally, GeoSEMA refers to geospatial, spatio-evolutive and mobile space constituents where a conceptual geospatial space model is given in this paper. In addition to modeling and categorizing geospatial agents, the model incorporates the concept of inter-agents event-based protocols. Finally, a rapid software-architecture prototyping GeoSEMA platform is also given. It will be implemented/ validated in the next phase of our work.

Keywords: Location-Trajectory management, GIS, Mobile- Moving Objects/Agents, Multipurpose/Spatiotemporal data, Multi- Agent Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
9176 Teachers’ Perceptions of Their Principals’ Interpersonal Emotionally Intelligent Behaviours Affecting Their Job Satisfaction

Authors: Prakash Singh

Abstract:

For schools to be desirable places in which to work, it is necessary for principals to recognise their teachers’ emotions, and be sensitive to their needs. This necessitates that principals are capable to correctly identify their emotionally intelligent behaviours (EIBs) they need to use in order to be successful leaders. They also need to have knowledge of their emotional intelligence and be able to identify the factors and situations that evoke emotion at an interpersonal level. If a principal is able to do this, then the control and understanding of emotions and behaviours of oneself and others could improve vastly. This study focuses on the interpersonal EIBS of principals affecting the job satisfaction of teachers. The correlation coefficients in this quantitative study strongly indicate that there is a statistical significance between the respondents’ level of job satisfaction, the rating of their principals’ EIBs and how they believe their principals’ EIBs will affect their sense of job satisfaction. It can be concluded from the data obtained in this study that there is a significant correlation between the sense of job satisfaction of teachers and their principals’ interpersonal EIBs. This means that the more satisfied a teacher is at school, the more appropriate and meaningful a principal’s EIBs will be. Conversely, the more dissatisfied a teacher is at school the less appropriate and less meaningful a principal’s interpersonal EIBs will be. This implies that the leaders’ EIBs can be construed as one of the major factors affecting the job satisfaction of employees.

Keywords: Emotional intelligence, teachers’ emotions, teachers’ job satisfaction, principals’ emotionally intelligent behaviours.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
9175 Towards a Suitable and Systematic Approach for Component Based Software Development

Authors: Kuljit Kaur, Parminder Kaur, Jaspreet Bedi, Hardeep Singh

Abstract:

Software crisis refers to the situation in which the developers are not able to complete the projects within time and budget constraints and moreover these overscheduled and over budget projects are of low quality as well. Several methodologies have been adopted form time to time to overcome this situation and now in the focus is component based software engineering. In this approach, emphasis is on reuse of already existing software artifacts. But the results can not be achieved just by preaching the principles; they need to be practiced as well. This paper highlights some of the very basic elements of this approach, which has to be in place to get the desired goals of high quality, low cost with shorter time-to-market software products.

Keywords: Component Model, Software Components, SoftwareRepository, Process Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
9174 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: Blood pressure, noninvasive optical system, PCA, continuous monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687