Search results for: hierarchical Hidden Markov Model
7560 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4917559 A High Bitrate Information Hiding Algorithm for Video in Video
Authors: Wang Shou-Dao, Xiao Chuang-Bai, Lin Yu
Abstract:
In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.Keywords: Information Hiding, Embed, Quantification, Extract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18997558 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation
Authors: Shuhe Shao
Abstract:
This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.Keywords: BP neural network, sports aerobics, performance, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16187557 Building a Hierarchical, Granular Knowledge Cube
Authors: Alexander Denzler, Marcel Wehrle, Andreas Meier
Abstract:
A knowledge base stores facts and rules about the world that applications can use for the purpose of reasoning. By applying the concept of granular computing to a knowledge base, several advantages emerge. These can be harnessed by applications to improve their capabilities and performance. In this paper, the concept behind such a construct, called a granular knowledge cube, is defined, and its intended use as an instrument that manages to cope with different data types and detect knowledge domains is elaborated. Furthermore, the underlying architecture, consisting of the three layers of the storing, representing, and structuring of knowledge, is described. Finally, benefits as well as challenges of deploying it are listed alongside application types that could profit from having such an enhanced knowledge base.Keywords: Granular computing, granular knowledge, hierarchical structuring, knowledge bases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23777556 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective
Authors: M. K. Witek-Hajduk, T. M. Napiórkowski
Abstract:
A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.
Keywords: Business model, cooperation, cluster analysis, retailer-manufacturer relationships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11227555 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning
Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas
Abstract:
During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5347554 Availability Analysis of Milling System in a Rice Milling Plant
Authors: P. C. Tewari, Parveen Kumar
Abstract:
The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.Keywords: Markov process, milling system, availability modeling, rice milling plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15797553 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24817552 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction
Authors: Ε. Giovanis
Abstract:
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14207551 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16727550 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7957549 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35207548 Conceptual Method for Flexible Business Process Modeling
Authors: Adla Bentellis, Zizette Boufaïda
Abstract:
Nowadays, the pace of business change is such that, increasingly, new functionality has to be realized and reliably installed in a matter of days, or even hours. Consequently, more and more business processes are prone to a continuous change. The objective of the research in progress is to use the MAP model, in a conceptual modeling method for flexible and adaptive business process. This method can be used to capture the flexibility dimensions of a business process; it takes inspiration from modularity concept in the object oriented paradigm to establish a hierarchical construction of the BP modeling. Its intent is to provide a flexible modeling that allows companies to quickly adapt their business processes.Keywords: Business Process, Business process modeling, flexibility, MAP Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18987547 Prioritization Assessment of Housing Development Risk Factors: A Fuzzy Hierarchical Process-Based Approach
Authors: Yusuf Garba Baba
Abstract:
The construction industry and housing subsector are fraught with risks that have the potential of negatively impacting on the achievement of project objectives. The success or otherwise of most construction projects depends to large extent on how well these risks have been managed. The recent paradigm shift by the subsector to use of formal risk management approach in contrast to hitherto developed rules of thumb means that risks must not only be identified but also properly assessed and responded to in a systematic manner. The study focused on identifying risks associated with housing development projects and prioritisation assessment of the identified risks in order to provide basis for informed decision. The study used a three-step identification framework: review of literature for similar projects, expert consultation and questionnaire based survey to identify potential risk factors. Delphi survey method was employed in carrying out the relative prioritization assessment of the risks factors using computer-based Analytical Hierarchical Process (AHP) software. The results show that 19 out of the 50 risks significantly impact on housing development projects. The study concludes that although significant numbers of risk factors have been identified as having relevance and impacting to housing construction projects, economic risk group and, in particular, ‘changes in demand for houses’ is prioritised by most developers as posing a threat to the achievement of their housing development objectives. Unless these risks are carefully managed, their effects will continue to impede success in these projects. The study recommends the adoption and use of the combination of multi-technique identification framework and AHP prioritization assessment methodology as a suitable model for the assessment of risks in housing development projects.
Keywords: Risk identification, risk assessment, analytical hierarchical process, multi-criteria decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7357546 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression
Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh
Abstract:
The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.Keywords: Disturbed state concept, hierarchical single surface, failure criterion, high performance concrete, high-strength concrete, nonlinear finite element analysis, polymer concrete, steel fibers, uniaxial compression test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12397545 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)
Authors: S. M. Ali, N. R. Dhar
Abstract:
Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.Keywords: ANN, MQL, Surface Roughness, Tool Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38687544 A Hybrid GMM/SVM System for Text Independent Speaker Identification
Authors: Rafik Djemili, Mouldi Bedda, Hocine Bourouba
Abstract:
This paper proposes a novel approach that combines statistical models and support vector machines. A hybrid scheme which appropriately incorporates the advantages of both the generative and discriminant model paradigms is described and evaluated. Support vector machines (SVMs) are trained to divide the whole speakers' space into small subsets of speakers within a hierarchical tree structure. During testing a speech token is assigned to its corresponding group and evaluation using gaussian mixture models (GMMs) is then processed. Experimental results show that the proposed method can significantly improve the performance of text independent speaker identification task. We report improvements of up to 50% reduction in identification error rate compared to the baseline statistical model.Keywords: Speaker identification, Gaussian mixture model (GMM), support vector machine (SVM), hybrid GMM/SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22377543 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19077542 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6647541 Clustering of Variables Based On a Probabilistic Approach Defined on the Hypersphere
Authors: Paulo Gomes, Adelaide Figueiredo
Abstract:
We consider n individuals described by p standardized variables, represented by points of the surface of the unit hypersphere Sn-1. For a previous choice of n individuals we suppose that the set of observables variables comes from a mixture of bipolar Watson distribution defined on the hypersphere. EM and Dynamic Clusters algorithms are used for identification of such mixture. We obtain estimates of parameters for each Watson component and then a partition of the set of variables into homogeneous groups of variables. Additionally we will present a factor analysis model where unobservable factors are just the maximum likelihood estimators of Watson directional parameters, exactly the first principal component of data matrix associated to each group previously identified. Such alternative model it will yield us to directly interpretable solutions (simple structure), avoiding factors rotations.
Keywords: Dynamic Clusters algorithm, EM algorithm, Factor analysis model, Hierarchical Clustering, Watson distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16247540 High Securing Cover-File of Hidden Data Using Statistical Technique and AES Encryption Algorithm
Authors: A. A. Zaidan, Anas Majeed, B. B. Zaidan
Abstract:
Nowadays, the rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threatens. It-s a big security and privacy issue with the large flood of information and the development of the digital format, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information. Nowadays protection system classified with more specific as hiding information, encryption information, and combination between hiding and encryption to increase information security, the strength of the information hiding science is due to the non-existence of standard algorithms to be used in hiding secret messages. Also there is randomness in hiding methods such as combining several media (covers) with different methods to pass a secret message. In addition, there are no formal methods to be followed to discover the hidden data. For this reason, the task of this research becomes difficult. In this paper, a new system of information hiding is presented. The proposed system aim to hidden information (data file) in any execution file (EXE) and to detect the hidden file and we will see implementation of steganography system which embeds information in an execution file. (EXE) files have been investigated. The system tries to find a solution to the size of the cover file and making it undetectable by anti-virus software. The system includes two main functions; first is the hiding of the information in a Portable Executable File (EXE), through the execution of four process (specify the cover file, specify the information file, encryption of the information, and hiding the information) and the second function is the extraction of the hiding information through three process (specify the steno file, extract the information, and decryption of the information). The system has achieved the main goals, such as make the relation of the size of the cover file and the size of information independent and the result file does not make any conflict with anti-virus software.Keywords: Cryptography, Steganography, Portable ExecutableFile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18037539 A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting
Authors: Yanmin Zhao, Siu Ming Yiu
Abstract:
To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.
Keywords: Short integer solution problem, signatures, the symmetric-key setting, watermarking schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5637538 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values
Authors: Hidehiko Okada
Abstract:
Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.
Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15467537 Generating Concept Trees from Dynamic Self-organizing Map
Authors: Norashikin Ahmad, Damminda Alahakoon
Abstract:
Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.
Keywords: dynamic self-organizing map, concept formation, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14607536 Model-Based Person Tracking Through Networked Cameras
Authors: Kyoung-Mi Lee, Youn-Mi Lee
Abstract:
This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.
Keywords: Person tracking, human model, networked cameras, vision-based surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14897535 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.
Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10067534 Inferring Hierarchical Pronunciation Rules from a Phonetic Dictionary
Authors: Erika Pigliapoco, Valerio Freschi, Alessandro Bogliolo
Abstract:
This work presents a new phonetic transcription system based on a tree of hierarchical pronunciation rules expressed as context-specific grapheme-phoneme correspondences. The tree is automatically inferred from a phonetic dictionary by incrementally analyzing deeper context levels, eventually representing a minimum set of exhaustive rules that pronounce without errors all the words in the training dictionary and that can be applied to out-of-vocabulary words. The proposed approach improves upon existing rule-tree-based techniques in that it makes use of graphemes, rather than letters, as elementary orthographic units. A new linear algorithm for the segmentation of a word in graphemes is introduced to enable outof- vocabulary grapheme-based phonetic transcription. Exhaustive rule trees provide a canonical representation of the pronunciation rules of a language that can be used not only to pronounce out-of-vocabulary words, but also to analyze and compare the pronunciation rules inferred from different dictionaries. The proposed approach has been implemented in C and tested on Oxford British English and Basic English. Experimental results show that grapheme-based rule trees represent phonetically sound rules and provide better performance than letter-based rule trees.
Keywords: Automatic phonetic transcription, pronunciation rules, hierarchical tree inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19267533 Stego Machine – Video Steganography using Modified LSB Algorithm
Authors: Mritha Ramalingam
Abstract:
Computer technology and the Internet have made a breakthrough in the existence of data communication. This has opened a whole new way of implementing steganography to ensure secure data transfer. Steganography is the fine art of hiding the information. Hiding the message in the carrier file enables the deniability of the existence of any message at all. This paper designs a stego machine to develop a steganographic application to hide data containing text in a computer video file and to retrieve the hidden information. This can be designed by embedding text file in a video file in such away that the video does not loose its functionality using Least Significant Bit (LSB) modification method. This method applies imperceptible modifications. This proposed method strives for high security to an eavesdropper-s inability to detect hidden information.Keywords: Data hiding, LSB, Stego machine, VideoSteganography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42697532 A Brain Inspired Approach for Multi-View Patterns Identification
Authors: Yee Ling Boo, Damminda Alahakoon
Abstract:
Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.
Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15447531 Application of Neural Network in User Authentication for Smart Home System
Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat
Abstract:
Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.Keywords: Neural Network, User Authentication, Smart Home, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040