
 

 

  
Abstract—This paper proposes a novel approach that combines 

statistical models and support vector machines. A hybrid scheme 
which appropriately incorporates the advantages of both the 
generative and discriminant model paradigms is described and 
evaluated. Support vector machines (SVMs) are trained to divide the 
whole speakers’ space into small subsets of speakers within a 
hierarchical tree structure. During testing a speech token is assigned 
to its corresponding group and evaluation using gaussian mixture 
models (GMMs) is then processed. Experimental results show that 
the proposed method can significantly improve the performance of 
text independent speaker identification task. We report improvements 
of up to 50% reduction in identification error rate compared to the 
baseline statistical model. 
 

Keywords—Speaker identification, Gaussian mixture model 
(GMM), support vector machine (SVM), hybrid GMM/SVM.  

I. INTRODUCTION 
ECOGNIZING speakers from their voices are one of the 
important applications of speech technology in real world 

environment. Speaker recognition refers to two fields: Speaker 
Identification (SI) and Speaker Verification (SV) [1], [2]. In 
speaker identification, the goal is to determine which one of 
group of known voices (closed set) best matches the input 
voice sample. There are two tasks: text-dependent and text-
independent speaker identification. In text-dependent 
identification, the spoken phrase is known to the system 
whereas in the text-independent case, the spoken phrase is 
unknown. Success in both identification tasks depends on 
extracting and modelling the speaker dependent characteristics 
of the speech signal, which can effectively distinguish 
between talkers. In the past years, several modelling 
techniques have been addressed. These cover pattern matching 
approaches (dynamic time warping), statistical modelling 
(Hidden Markov Models HMM or Gaussian Mixture Models 
GMM), and connectionist methods (multilayer perceptrons) 
[3]-[5]. 

Gaussian Mixture Models (GMM) represent the state-of-
the-art technique in text independent speaker identification 
[6]. However GMMs trained with maximum likelihood (ML) 
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criterion suffer from lack of discrimination. Recently, a new 
classification method called Support Vector Machines (SVM) 
[7], [8] based on the principle of structural risk minimization 
has found a great attention in the speech community. SVMs 
are attractive because they discriminate between classes and 
could be used to train non-linear decision boundaries in an 
efficient manner. So one can hope to increase the efficiency of 
standard generative models like GMMs and HMMs with the 
discriminative power of SVMs. Some researchers in last few 
years proposed methods following this way in different tasks 
of speaker recognition with much success [9]-[11]. 

In this paper we propose a new combination scheme using 
the SVM ability in discrimination between two classes and the 
classification power of a GMM, we argue and we will 
particularly show that our combination method brings a 
significant performance applied in a text independent speaker 
identification task over the standard approach (baseline 
system) using only GMMs. 

The remainder of this paper is organized as follows: in 
section II we review the basics of a GMM system and its 
application in a speaker identification task. In section III we 
present SVM theory, we also describe our combination 
scheme. Experimental results that lead us to construct and 
choose some crucial parameters are given in section IV. 
Finally conclusions and perspectives are drawn in section V. 

II. GAUSSIAN MIXTURE SPEAKER MODEL 
This section describes the form of a Gaussian mixture 

model (GMM) and its use as a representation of speaker 
identity for text independent speaker identification. Prior to 
construct a GMM for each speaker, speech signal is first 
transformed to a set of spectral vectors, which is a convenient 
representation of a person’s vocal tract structure and would 
constitute an important factor distinguishing one person’s 
voice from another. Details of this transformation are given 
later in section IV. Description of the GMM system herein 
uses the same notation as in [6]. 

A.  The Gaussian Model 
A Gaussian mixture density is a weighted sum of M 

component densities given by: 

                         ∑
=

=λ
M

1i
ii )x(bp)/x(p                                    (1) 

Where x is a d-dimensional vector, bi(x) are the component 
densities and pi the mixture weights. Each component density 
is a d-variate Gaussian function having the form: 
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With mean vector iμ and covariance matrix iΣ . The mixture 

weights satisfy the constraint that ∑
=

=
M

1i
i 1p . 

The Gaussian mixture density is parameterised by the mean 
vectors, covariance matrices and mixture weights from all 
component densities. The parameters are represented by a 
single notation: 
                    M...1i           ),,p( iii =Σμ=λ                               (3) 

For speaker identification each speaker is modelled by a 
GMM and is referred to by his model λ . 

B.  Parameter Estimation 
Given training speech (transformed to spectral vectors) 

from a speaker’s voice, the goal of speaker model training is 
to estimate the parameters of the GMM λ , which in some 
sense best matches the distribution of the training feature 
vectors. The most popular method for training GMMs is a 
maximum likelihood (ML) estimation[12]. The aim of ML 
estimation is to find the model parameters, which maximize 
the likelihood of the GMM given the training data.  For a 
sequence of T training vectors )x,...,x(X T1= the GMM 
likelihood can be written as: 

                          ∏
=

λ=λ
T

1i
i )/x(p)/X(p                                    (4) 

Maximization of the quantity in (4) is accomplished through 
running the expectation-maximization (EM) algorithm [13]. 
The idea is beginning with an initial model λ , to estimate a 
new model λ  satisfying )/X(p)/X(p λ≥λ . The new model 
then becomes the initial model for the next iteration and the 
process is repeated until some convergence threshold is 
reached. Following formulas are used on each EM iteration. 

Mixture weights:  ∑
=

λ=
T

1t
ti ),x/i(pT

1p                                 (5) 

Means:                
∑

∑

=

=

λ
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=
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The a posteriori probability for acoustic class is given by 

                       
∑

=

=λ M

1k
tkk

tii
t

)x(bp

)x(bp),x/i(p                                   (8) 

 
C.  Speaker Identification 
For speaker identification, a group of S speakers 

S=(1,2,…,S) is represented by GMM’s S21 ,...,, λλλ . The 
objective is to find the speaker model, which has the 

maximum a posteriori probability for a given observation 
sequence. 
                                    

            )X(p
)(P)/x(pmaxArg)X/(PmaxArgŜ kk

Sk1
k

Sk1

λλ=λ=
≤≤≤≤

           (9) 

 
Where the second equation is due to Bayes’s rule. Assuming 
equally likely speakers )S/1)(P( k =λ and noting that p(X) is 
the same for all speaker models, the classification becomes: 
 
                                 )/x(pmaxArgŜ k

Sk1
λ=

≤≤
                            (10)  

Finally with logarithms, the speaker identification system 
gives: 
 

                           ∑
=≤≤

λ=
T

1t
kt

Sk1
)/x(plogmaxArgŜ                       (11) 

 
In which )/x(p kt λ is given in (1).  

D.  Performance Evaluation 
Evaluation of a speaker identification experiment is 

conducted as follows. The test speech is first processed by the 
front-end analysis to produce a sequence of spectral vectors 

)x,...,x( T1 . Different test utterances of length 2, 5 and 10 
seconds were used each having a number of T feature vectors. 
Performance evaluation is then computed using the 
Identification Error Rate (IER) given by: 
 
               100*

Vectors of Num. Total
 Vectors Identified Incorrect  Num.

(%)IER =                 (12) 

 
The IER is calculated for each test utterance of length T 
vectors. 

III.  SUPPORT VECTOR MACHINES 
Support Vector Machines (SVM) are binary classifiers 

based on the principle of structural risk minimization [14]. 
Experimental results indicate that SVMs can achieve a 
generalisation performance greater than or at least equal to 
traditional classifiers. SVMs use a known kernel function to 
define a hyperplane in order to separate given data points into 
two predefined classes. Within this separation, the soft-margin 
SVM can tolerate minor misclassifications [15]. It is 
considered to be more suitable for classification and therefore 
is used in our work. 

A.  Description of SVMs 
We will give below a brief description of SVMs and how to 

use them in a pattern categorization. More details can be 
found in Vapnik’s book [16] and in Burges’ tutorial [17]. 

An SVM is a binary classifier that makes its decisions by 
constructing a linear decision boundary or hyperplane that 
optimally separates two classes. 

The hyperplane is defined by 0  b   w.x =+ where w is the 
normal to the plane. For linearly separable data labelled 
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{ } 1...Ni , -1,1  y ,     x, )y,(x i
n

iii =∈ℜ∈ . The optimal hyperplane is 
chosen according to the maximum margin criterion (the 
minimal distance from the hyperplane to each points) i.e. by 
choosing the separating plane that maximises the Euclidean 
distance to the nearest data points on each side of that plane. 
The problem can be formulated as 
 

                    
⎩
⎨
⎧

≥+ 1y)bw.x(      tosubject
w2

1    imisemin
ii

2

2                       (13)  

 
The solution for the optimal hyperplane w0, is a linear 
combination of a small subset of data, { }1...N   s , xs ∈ known as 
support vectors. These support vectors also satisfy the equality 
 

                           1y)bw.x( ss =+                                    (14) 
 
When the data are not linearly separable then no hyperplane 
exists for which all points satisfy the inequality (13). In this 
case, we may include slack variables iξ shown in Fig.1 into 
the inequalities relaxing them slightly so that some points are 
allowed to be misclassified. The objective function becomes: 
                                                    

              
⎪⎩

⎪
⎨
⎧

ξ−≥+

ξ+ ∑
i  allfor   1y)bw.x(  osubject  t

)(LCw2
1

iii

i
i

2

2               (15) 

 

 
Fig. 1 Margin and slack variables for a classification problem 

 
The second term of (15) is the empirical risk associated 

with those points that are misclassified, L is the loss function 
(cost function) and C is a hyperparameter that trades off the 
effects of minimizing the empirical risk against maximizing 
the margin. The first term can be thought as a regularization 
term, which gives the SVM its ability to generalize well on 
sparse data. 

The linear error cost function is the most commonly used 
since it is robust to outliers. The dual formulation which is 
more conveniently solved, of (15) with ii )(L ξ=ξ is: 
 

         
⎪
⎩

⎪
⎨

⎧

=α≤α≤

⎟
⎠
⎞

⎜
⎝
⎛ αα+α=α

∑
∑ ∑α

∗

i
iii

i j,i
jijijii

0y   and  C0     tosubject

x.xyyMax
               (16) 

 
In which N...1i   i =α is the set of Lagrange multipliers of the 
constraints in the primal optimisation problem. The dual can 
be solved using standard quadratic programming techniques. 
The optimum decision boundary w0 is given by: 
 

                         ∑α=
i

iii0 xyw                                 (17) 

 
And is a linear combination of all points in feature space that 
have 0i >ξ and lying on the margin )0( i ≠α . The extension to 
non-linear boundaries is achieved through the use of kernel 
functions that satisfy Mercer’s condition [18]. In essence, a 
non-linear mapping is defined from the input space, in which 
the data are observed, to a manifold in higher dimensional 
feature space, which is defined implicitly by the kernel 
functions.  

The hyperplane is constructed in the feature space and 
intersects with the manifold creating a non-linear boundary in 
the input space. In practice, the mapping is achieved by 
replacing the value of dot products between two vectors in 
input space with the value that results when the same dot 
product is carried out in the feature space. The dot product in 
the feature space is expressed conveniently by the kernel as 
some function of the two vectors in input space. The 
polynomial and radial basis function (RBF) kernels are 
commonly used, and take the form: 
 

                      n
jiji )1x.x()x,x(K +=                            (18) 

 
And 
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Respectively, where n is the order of the polynomial and σ is 
the width of the radial basis function. The dual for the non-
linear case is thus: 
 
                                                         

                

⎪
⎪
⎩
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⎨

⎧
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⎟
⎠
⎞

⎜
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∑

∑ ∑α
∗

i
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i j,i
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)x,x(KyyMax
                (20) 

 
The use of kernels means that an explicit transformation of 
data to the feature space is not required. 

B.  SVMs and Speaker Identification Systems 
Although GMMs are the most widely used in speaker 

identification systems [19], lack of discrimination of such 
generative models incited researchers to find out 

 
                                                           iξ      
                                                                   margin γ   
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discrimination based learning procedures in order to obtain or 
to outperform GMM’s performance. SVM classifiers are well 
suited to separate complex regions between two classes 
through an optimal non-linear decision boundary.  

The first approach in using SVM classifiers in the 
framework of speaker identification was implemented in [20] 
where SVMs were trained directly on the acoustic space, 
which characterize the client data and the impostor data, 
during testing the segment score is obtained by averaging the 
scores of the SVM output for each frame. Other applications 
of SVMs used kernels sequences [21].  

Another approach became recently more popular, consists 
of making a combination of GMMs and SVMs. Several types 
of combination were proposed. In [22] a discriminative 
training of GMMs is performed by continuous density SVM. 
Another from of combination used SVMs as a post treatment 
of the GMMs by Fischer mapping [23]. This mapping allows 
obtaining vectors of high dimensions where the number of 
dimensions is equal to the number of the GMM parameters. 
These vectors are then used by SVMs to achieve 
discrimination and decision.  

The work presented in [24] exploits the advantages of the 
GMM models and SVMs in a single system by deriving a 
probabilistic distance kernel computed using the divergence of 
Kullback-Leibler (KL) between GMMs. 

C.  The Proposed Hybrid GMM/SVM System 
The work presented here belongs to the category of 

combining the benefits of GMMs in training and SVMs in 
discrimination. SVMs used in this paper are binary classifiers 
between two groups of speakers giving a hierarchical tree 
structure. Identification errors from the baseline system, as we 
will see in next section often occurs when a speaker is taken 
for another speaker belonging to the same gender, i.e. a male 
speaker msi is confused with another male speaker msj and a 
female speaker fsk unrecognized as another female speaker fsl. 
Since SVMs had proved their effectiveness in separating two 
given classes, we applied them in dividing very confusable 
speakers prior to the identification system using GMM 
speaker’s models. The overall structure of our hybrid system 
is depicted in Fig. 2. 

Following feature extraction of the input speech signal, 
SVM 1 is aimed at finding the gender of the input voice. SVM 
2 and SVM 3 are trained to cluster the male group 
(respectively the female group) into two subsets of speakers. 
Finally at the last level identification is carried out using only 
a subset of GMM speaker models. In comparison with the 
standard approach GMMs are still used in evaluation but with 
much less computational load, since the initial S speakers are 
divided nearly by a factor of 4, and especially achieving 
higher identification accuracy. Thus, our hybrid system 
involves two main steps: 
Training: where the individual GMM speakers’ models are 
constructed along with the support vector classifiers SVM 1, 
SVM 2 and SVM 3.   
Testing: the identification process of the GMM/SVM system 
proposed follows the hierarchical structure of Fig. 2. It should 
be noted here that errors for the baseline system and the 

hybrid one are not correlated. If the GMM system fails at 
identification one speaker among the whole set of S speakers, 
it is unlikely to happen when only a subset of the S speakers 
are in competition.   
 

 
Fig. 2 Hierarchical tree structure of the hybrid GMM/SVM system 

 

IV.  EXPERIMENTAL RESULTS 

A.  Database and Speech Analysis 
Experiments in this study were performed using Arabic data 

sets built for the purpose. Clean speech signals using close 
talk high quality microphone was recorded under quiet 
laboratory conditions. Data sets were collected from 16 
speakers, 10 were female and 6 male. For each speaker, there 
were 3 separate sessions, two sessions were used for training 
data and one session for testing. 

Speech signals were sampled at 11025 Hz. Mel scale 
Frequency Cepstral Coefficients (MFCC) were employed as 
feature analysis [25],[26]. A pre-emphasis filter 

1z95.0  1  )z(H −−= is used before framing. Each frame is 
multiplied with a 23.2ms Hamming window shifted by 
11.6ms. From the windowed frame FFT is computed and the 
magnitude spectrum is filtered with a bank of 27 triangular 
filters spaced on the Mel-scale. The log-compressed filter 
outputs are converted into cepstral coefficients by DCT giving 
twelve coefficients. The zeroth cepstral coefficient is not used 
in the cepstral feature vector and replaced with log of energy 
of the frame calculated in the time domain. Hence, the feature 
vector is formed by thirteen coefficients.  

This processing occurs every 11.6ms producing 
approximatively 2586 and 5172 vectors in 30 and 60 seconds 
of speech, these quantities were used in training the baseline 
system (GMM only). For testing all systems carried out in this 
work, durations of 2s, 5s and 10s were utilised since the 
emphasis in speaker identification tasks is to capture the 
identity of a speaker with the minimum material in hand, here 
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the speech signal. Vectors obtained are 172, 431 and 862 
corresponding respectively to durations above. 

B.  Baseline System 
By the baseline system, it meant the system in which only 

the GMM speakers’ models are used in the evaluation process. 
GMMs were trained using the theoretical material given in 
section II. An important problem rises when constructing a 
GMM’s speaker model in how to choose adequately the 
number of components M in a mixture. Fig. 3 shows the 
identification performance evaluated with the Identification 
Error Rate (IER) when training data size equals to 30s and 60s 
of speech versus different values of M varying from M=2 to 
M=256. For both experiments, IER is slightly decreased when 
M is increased by a factor of 2, this is true for different lengths 
of testing utterances.           
 

TABLE I 
GMM IDENTIFICATION ERROR RATE (IER) IN PERCENT FOR DIFFERENT 

AMOUNTS OF TRAINING DATA AND MODEL ORDERS 
 Training with 30s Training with 60s 

M 2s 5s 10s 2s 5s 10s 

2 51.9 52.1 56.7 54.0 56.0 56.4 
4 43.5 42.7 43.2 46.5 46.8 46.9 
8 34.8 33.6 33.9 36.1 36.9 37.5 

16 25.0 24.7 24.8 27.8 28.3 28.5 
32 19.2 18.1 17.6 20.8 20.5 20.2 
64 15.3 13.7 13.2 16.3 15.3 14.9 
128 13.8 11.9 11.0 13.9 12.4 11.6 
256 12.9 10.6 9.8 11.7 9.8 9.1 

 
It is clear from the table that the identification errors are 

superior to 20% from 2 to 16 mixture components even if 
training material is large (equals to 60s). We could argue that 
for a value of M up to 16, there are still few components to 
produce an accurate model capable at distinguishing 
characteristics of a speaker’s distribution. For M varying from 
32 to 256 components per model, identification errors fall than 
20% except for training data size equals to 60s of speech with 
M=32,  identification error rates for this range of M appear 
rather stable. Greatest reductions in IER are reached with 
M=256 and are 24%  with a training data size of 30s and 
22.2% with a training data of 60s when utterances lengths are 
compared on their extremum values 2s and 10s. It is hence 
observed lowest identification errors occur with longest test 
utterance lengths. Our best result is achieved for 256 mixture 
components with an utterance test length of 10s and a training 
data size of 60s of speech. Choosing too many mixture 
components (M>256) could increase in some cases 
identification performance but only if we have an available 
training data larger enough relative to the number of mixture 
components. However this is not always what happens when 
dealing with speaker recognition tasks, where we could have 
only small amounts of some speakers’ voices.  

Own experiments not included here, had showed an 
increase in IER to 25% when using 512 mixture components, 
this result due to the overfitting effect was also reported in 
[27].  

Based on these observations, next comparisons will be 
conducted with 32, 64, 128 and 256 components of the GMM 
speakers’ models. 

C.  Choosing SVM parameters 
Crucial parameters for training a SVM are the upper bound 

C allowing us how strictly we want the classifier to fit the 
training data and the variance 2σ of the radial basis function 
(RBF).  

To investigate the performance accuracy of SVM classifier 
some experiments in separating between males and females 
were applied and summarized in Table II. Training SVMs was 
done using 2s of speech from each speaker. 
 

TABLE II 
SUPPORT VECTORS AND NUMBER OF ITERATIONS IN TRAINING SVM1 

FOR SEVERAL VALUES OF VARIANCES AND UPPER BOUND C 
C=1 C=10 C=100 

2σ NSV (%) Iter NSV(%) Iter NSV Iter 
0.2 36.9 167 22.4 560 12.7 1829 
0.5 43.9 162 28.3 779 18.2 3128 
0.8 47.7 132 33.0 898 21.4 3237 
1 49.6 130 35.5 978 23.2 3131 
2 54.0 97 42.0 458 29.0 2535 
5 61.3 67 46.6 349 38.7 1714 

10 69.3 67 49.6 323 43.2 1073 
20 48.9 74 53.5 197 45.0 621 
100 97.1 89 68.9 179 49.2 170 

NSV: Number of Support Vectors in (%) 
Iter: Number of iterations in training SVMs 

 
Three values of upper bound C were compared over a range 

of preselected variances for the RBF. For each combination of 
C and 2σ , the number of support vectors (NSV) given in (%) 
and the number of iterations in training SVMs were computed. 
It is seen that small values for variances but with a linear 
increase in C give acceptable amount of support vectors, 
which in turn must be stored in memory for testing. However 
the algorithm seems to be faster with decreased upper bounds 
C. Evaluating the accuracy of the SVM classifier is shown in 
Fig. 3, where training was accomplished with 2s, 5s and 10s 
of speech per speaker. It is interesting to observe the 
insensitivity for the classifier regarding the amount of 
speakers’ durations (Fig. 3a).  

The average accuracy obtained in dividing the two genders, 
are respectively 94.08%, 94.7% and 95.5% for the 2s, 5s and 
10s of speech. Only a 1.5% reduction in performance 
accuracy is noted when comparing the 10s and 2s durations 
while the number of vectors in training is multiplied by a 
factor of 5. Number of support vectors is also consistent when 
C is set to larger values.  

A variance of 0.2 and an upper bound of  1000 appear to be 
good choices in training SVMs in this work. 
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Fig. 3 Performance accuracy (a) and fraction of support vectors (b) in 

percent as a function of upper bound C obtained when training 
SVM1 with different speakers’ durations 

D.  The GMM/SVM System 
The focus of this paper is to compare the performance of 

the baseline GMM system and the proposed GMM/SVM 
described earlier in Fig. 2 applied on a text independent 
speaker identification task. The hybrid GMM/SVM uses 
GMMs in the identification process on a relative small subset 
of speakers given after classifying the unknown input speaker’ 
voice into its corresponding group (subset) via the hierarchical 
splitting by SVMs namely SVM1, SVM2 and SVM3. 

Training SVM1 in order to divide into male and female 
genders is straightforward, male and female speakers are 
known from the database, supervised training is directly 
implemented. For training SVM2 and SVM3 as binary 
classifiers on positive and negative examples from 
respectively male and female speakers, we used the following 
strategy: On the basis of experimental analysis of the GMM 
system and searching for sources of identification errors for 
each speaker si taken as another speaker sj, we have noted that 
confusable identification errors occur often on the same 
gender group, speakers si and sj are both males or females. 
This is indeed shown in Fig. 4 where male speakers are 

indexed as 1,6,9,10,14,16; the other index concerns female 
speakers. We could observe from the figure, let’s take as an 
example for male speakers 1 and 10, they were confused with 
speakers 14 and 6; so the idea we adopted for training SVM2 
was to put these confusable speakers on each side of the 
hyperplane. The same rule of reasoning was applied for 
training SVM3 corresponding to female speakers. It is worth 
noting the possibility of the evaluation step by GMMs to be 
processed after an individual use of SVM1, SVM1 + SVM2, 
SVM1 + SVM3, and SVM1 + SVM2 + SVM3. Identification 
performance for the hybrid GMM/SVM system is summarized 
in Table III. 
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Fig. 4 Curve representing the confusable speakers averaged from 

experiments on the baseline system 
 

TABLE III 
IDENTIFICATION ERROR RATE (%) FOR THE  HYBRID GMM/SVM SYSTEM 

FOR DIFFERENT MODEL ORDERS AND UTTERANCE LENGTHS USING: 
(A) TRAINING DATA WITH 30S OF SPEECH AND (B) TRAINING WITH 60S OF 

SPEECH PER SPEAKER 
(A) 

SVM1 SVM1+SVM2 SVM1+SVM3 All GMM
Order 2s 5s 10s 2s 5s 10s 2s 5s 10s 2s 5s 10s

32 17.9 16.9 16.4 14.2 13.8 13.0 13.0 11.8 11.7 9.30 8.60 8.30
64 14.6 12.8 12.3 11.7 10.1 9.6 10.7 9.0 8.6 7.8 6.2 5.9

128 12.9 11.0 10.2 10.1 8.4 7.8 9.5 7.7 7.0 6.7 5.1 4.7
256 12.3 10.0 9.1 10.1 8.1 7.2 8.9 6.7 6.2 6.6 4.9 4.4

 (B) 
SVM1 SVM1+SVM2 SVM1+SVM3 All GMM

Order 2s 5s 10s 2s 5s 10s 2s 5s 10s 2s 5s 10s
32 19.7 19.0 18.7 15.7 15.2 15.0 15.1 14.1 13.8 11.1 10.3 10.0
64 15.3 14.1 13.8 12.6 11.4 11.0 11.4 10.2 9.9 8.7 7.4 7.1

128 12.9 11.4 10.7 10.3 8.9 8.4 9.9 8.2 7.5 7.4 5.7 5.2
256 11.0 9.0 8.4 8.8 7.0 6.5 8.3 6.4 6.0 6.1 4.4 4.0

 
 

The purpose of the experiment is two manifold, we would 
evaluate the effect of training data size and of testing utterance 
length, using model sizes ranging from 32 to 256 and several 
combination of support vector machines trained on target 
subsets of speakers. It is clearly shown a significant 
improvement on speaker identification performance for the 
hybrid system compared to the baseline one over all the 
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variants explored. Although the two first raws of the two parts 
of table III give error rates a little bit greater than that of the 
last ones, this fact is due to the number of mixture components 
of the model, when this is large, better is the performance of 
the identification system. Relative improvements compared to 
the baseline system when using all the SVMs are 48.8%, 
53.7% and 55.1% corresponding to testing utterance lengths 
of 2s, 5s and 10s respectively, with training data size equals 
30s of speech per speaker. Further improvements are reached 
when training data size is augmented to 60s, reductions in IER 
are 47.9, 55.1 and 56% corresponding respectively to testing 
utterance lengths of 2s, 5s and 10s. As expected, larger testing 
utterance length provides smallest error rates. Hence, our best 
results are achieved with 256 mixture components and 10s of 
testing utterance length using the largest amount of training 
data.  

V.  CONCLUSION 
In this paper, we have proposed a combination method 

which includes both the descriptive strength of the GMM 
system with the high performance classification capabilities of 
SVMs applied in a text independent speaker identification 
task. SVMs in this work are trained to divide the whole set of 
speakers into small subsets through a hierarchical tree 
structure. Next, GMMs would be used in the evaluation 
process. The highlights of the proposed hybrid system are: 
1) A significant improvement compared to the baseline system 
is reported, a relative reduction in identification error rate up 
to 50% is reached, independently neither on the training data 
size nor on the testing utterances lengths. 
2) A reduction in computational load, since for the hybrid 
system, testing is carried out on a limited GMM models 
depending on the size of speakers’ subsets, whereas for the 
baseline system all the speakers’ GMM models are evaluated. 

Supervised training of SVMs in our work is based upon an 
objective analysis of identification errors of confusable 
speakers provided by the baseline system. Further work could 
include an automatic construction of the structured 
hierarchical tree avoiding any use of a priori knowledge about 
speakers.              
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