Search results for: and Hydrothermal scheduling algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3639

Search results for: and Hydrothermal scheduling algorithm.

3459 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

Authors: John T. Tsiligaridis

Abstract:

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
3458 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldah, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
3457 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization

Authors: Panpan Xu, Shulin Sui, Zongjie Du

Abstract:

Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.

Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
3456 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
3455 Timetabling Communities’ Demands for an Effective Examination Timetabling Using Integer Linear Programming

Authors: N. F. Jamaluddin, N. A. H. Aizam

Abstract:

This paper explains the educational timetabling problem, a type of scheduling problem that is considered as one of the most challenging problem in optimization and operational research. The university examination timetabling problem (UETP), which involves assigning a set number of exams into a set number of timeslots whilst fulfilling all required conditions, has been widely investigated. The limitation of available timeslots and resources with the increasing number of examinations are the main reasons in the difficulty of solving this problem. Dynamical change in the examination scheduling system adds up the complication particularly in coping up with the demand and new requirements by the communities. Our objective is to investigate these demands and requirements with subjects taken from Universiti Malaysia Terengganu (UMT), through questionnaires. Integer linear programming model which reflects the preferences obtained to produce an effective examination timetabling was formed.

Keywords: Demands, educational timetabling, integer linear programming, scheduling, university examination timetabling problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
3454 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao

Abstract:

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
3453 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution

Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil

Abstract:

Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.

Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3713
3452 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations

Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni

Abstract:

This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.

Keywords: Busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
3451 GenCos- Optimal Bidding Strategy Considering Market Power and Transmission Constraints: A Cournot-based Model

Authors: A. Badri

Abstract:

Restructured electricity markets may provide opportunities for producers to exercise market power maintaining prices in excess of competitive levels. In this paper an oligopolistic market is presented that all Generation Companies (GenCos) bid in a Cournot model. Genetic algorithm (GA) is applied to obtain generation scheduling of each GenCo as well as hourly market clearing prices (MCP). In order to consider network constraints a multiperiod framework is presented to simulate market clearing mechanism in which the behaviors of market participants are modelled through piecewise block curves. A mixed integer linear programming (MILP) is employed to solve the problem. Impacts of market clearing process on participants- characteristic and final market prices are presented. Consequently, a novel multi-objective model is addressed for security constrained optimal bidding strategy of GenCos. The capability of price-maker GenCos to alter MCP is evaluated through introducing an effective-supply curve. In addition, the impact of exercising market power on the variation of market characteristics as well as GenCos scheduling is studied.

Keywords: Optimal bidding strategy, Cournot equilibrium, market power, network constraints, market auction mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
3450 Application of ESA in the CAVE Mode Authentication

Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung

Abstract:

This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.

Keywords: ESA, CAVE, CDMA, authentication, mobilecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3449 Performance Analysis of the First-Order Characteristics of Polling Systems Based on Parallel Limited (k = 1) Services Mode

Authors: Liu Yi, Bao Liyong

Abstract:

Aiming at the problem of low efficiency of pipelined scheduling in periodic query-qualified service, this paper proposes a system service resource scheduling strategy with parallel optimized qualified service polling control. The paper constructs the polling queuing system and its mathematical model; firstly, the first-order and second-order characteristic parameter equations are obtained by partial derivation of the probability mother function of the system state variables, and the complete mathematical, analytical expressions of each system parameter are deduced after the joint solution. The simulation experimental results are consistent with the theoretical calculated values. The system performance analysis shows that the average captain and average period of the system have been greatly improved, which can better adapt to the service demand of delay-sensitive data in the dense data environment.

Keywords: Polling, parallel scheduling, mean queue length, average cycle time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60
3448 MICOSim: A Simulator for Modelling Economic Scheduling in Grid Computing

Authors: Mohammad Bsoul, Iain Phillips, Chris Hinde

Abstract:

This paper is concerned with the design and implementation of MICOSim, an event-driven simulator written in Java for evaluating the performance of Grid entities (users, brokers and resources) under different scenarios such as varying the numbers of users, resources and brokers and varying their specifications and employed strategies.

Keywords: Grid computing, Economic Scheduling, Simulation, Event-Driven, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
3447 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang

Abstract:

The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256
3446 Optimal Manufacturing Scheduling for Dependent Details Processing

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
3445 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users were in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively.

Keywords: Timetable, schedule, management system, online.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6402
3444 A New Algorithm to Stereo Correspondence Using Rank Transform and Morphology Based On Genetic Algorithm

Authors: Razagh Hafezi, Ahmad Keshavarz, Vida Moshfegh

Abstract:

This paper presents a novel algorithm of stereo correspondence with rank transform. In this algorithm we used the genetic algorithm to achieve the accurate disparity map. Genetic algorithms are efficient search methods based on principles of population genetic, i.e. mating, chromosome crossover, gene mutation, and natural selection. Finally morphology is employed to remove the errors and discontinuities.

Keywords: genetic algorithm, morphology, rank transform, stereo correspondence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
3443 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
3442 A Constrained Clustering Algorithm for the Classification of Industrial Ores

Authors: Luciano Nieddu, Giuseppe Manfredi

Abstract:

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.

Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
3441 Project Risk Management Techniques in Resource Allocation, Scheduling and Planning

Authors: Hossein Amoozad Khalili, Anahita Maleki

Abstract:

Normally business changes are made in order to change a level of activity in some way, whether it is sales, cash flow, productivity, or product portfolio. When attempts are made to make such changes, too often the business reverts to the old levels of activity as soon as management attention is diverted. Risk management is a field of growing interest to project managers as well as in general business and organizational management. There are several approaches used to manage risk in projects and this paper is a brief outline of some that you might encounter, with an indication of their strengths and weaknesses.

Keywords: Risk Management, Project Management, Scheduling, Planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3413
3440 Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

Authors: N. Mahendran, R. Priya

Abstract:

The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following criteria: 1) The mobile users request the specific data to the cloud based on their present location. 2) Power consumption since most of them are equipped with non-rechargeable batteries. Mostly, the sensors are deployed in hazardous and remote areas. This paper focuses on above observations and introduces an approach known as collaborative location-based sleep scheduling (CLSS) scheme. Both awake and asleep status of each sensor node is dynamically devised by schedulers and the scheduling is done purely based on the of mobile users’ current location; in this manner, large amount of energy consumption is minimized at WSN. CLSS work depends on two different methods; CLSS1 scheme provides lower energy consumption and CLSS2 provides the scalability and robustness of the integrated WSN.

Keywords: Sleep scheduling, mobile cloud computing, wireless sensor network, integration, location, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
3439 Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Authors: A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Keywords: Hydrothermal synthesis, magnesium borates, magnesium wastes, boron oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
3438 Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailai Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng L. V.

Abstract:

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: Hydrothermal process, lithium ion battery, Raman spectroscopy, stannous oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
3437 An Innovative Fuzzy Decision Making Based Genetic Algorithm

Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad

Abstract:

Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.

Keywords: Genetic Algorithm, Fuzzy Decision Making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
3436 FILMS based ANC System – Evaluation and Practical Implementation

Authors: Branislav Vuksanović, Dragana Nikolić

Abstract:

This paper describes the implementation and testing of a multichannel active noise control system (ANCS) based on the filtered-inverse LMS (FILMS) algorithm. The FILMS algorithm is derived from the well-known filtered-x LMS (FXLMS) algorithm with the aim to improve the rate of convergence of the multichannel FXLMS algorithm and to reduce its computational load. Laboratory setup and techniques used to implement this system efficiently are described in this paper. Experiments performed in order to test the performance of the FILMS algorithm are discussed and the obtained results presented.

Keywords: Active noise control, adaptive filters, inverse filters, LMS algorithm, FILMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
3435 Genetic Algorithms Multi-Objective Model for Project Scheduling

Authors: Elsheikh Asser

Abstract:

Time and cost are the main goals of the construction project management. The first schedule developed may not be a suitable schedule for beginning or completing the project to achieve the target completion time at a minimum total cost. In general, there are trade-offs between time and cost (TCT) to complete the activities of a project. This research presents genetic algorithms (GAs) multiobjective model for project scheduling considering different scenarios such as least cost, least time, and target time.

Keywords: Genetic algorithms, Time-cost trade-off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
3434 Simulation of Tracking Time Delay Algorithm using Mathcad Package

Authors: Mahmud Hesain ALdwaik, Omar Hsiain Eldwaik

Abstract:

This paper deals with tracking and estimating time delay between two signals. The simulation of this algorithm accomplished by using Mathcad package is carried out. The algorithm we will present adaptively controls and tracking the delay, so as to minimize the mean square of this error. Thus the algorithm in this case has task not only of seeking the minimum point of error but also of tracking the change of position, leading to a significant improving of performance. The flowchart of the algorithm is presented as well as several tests of different cases are carried out.

Keywords: Tracking time delay, Algorithm simulation, Mathcad, MSE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
3433 A New Algorithm for Cluster Initialization

Authors: Moth'd Belal. Al-Daoud

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.

Keywords: clustering, k-means, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
3432 Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions

Authors: Ashok V. Borhade, Sanjay G. Wakchaure

Abstract:

Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.

Keywords: Gallosilicate, hydrothermal, nitrite, Reitveldrefinement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3431 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3558
3430 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276