Search results for: Predictive analysis.
8722 Modelling for Roof Failure Analysis in an Underground Cave
Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández
Abstract:
Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.
Keywords: Forensic analysis, hypothesis modelling, roof failure, seismic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6178721 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17688720 Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress
Authors: Lucie Côté, Martin Lauzier, Guy Beauchamp, France Guertin
Abstract:
Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.
Keywords: Acceptance, coping strategies, measurement instrument, questionnaire, stress, validation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9338719 High Capacity Data Hiding based on Predictor and Histogram Modification
Authors: Hui-Yu Huang, Shih-Hsu Chang
Abstract:
In this paper, we propose a high capacity image hiding technology based on pixel prediction and the difference of modified histogram. This approach is used the pixel prediction and the difference of modified histogram to calculate the best embedding point. This approach can improve the predictive accuracy and increase the pixel difference to advance the hiding capacity. We also use the histogram modification to prevent the overflow and underflow. Experimental results demonstrate that our proposed method within the same average hiding capacity can still keep high quality of image and low distortionKeywords: data hiding, predictor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18968718 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling
Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis
Abstract:
Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.Keywords: Drilling, CAD based simulation, 3D-modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18928717 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.
Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8458716 The Relationship between Body Fat Percentage and Metabolic Syndrome Indices in Childhood Morbid Obesity
Authors: Mustafa M. Donma
Abstract:
Metabolic syndrome (MetS) is characterized by a series of biochemical, physiological and anthropometric indicators and is a life-threatening health problem due to its close association with chronic diseases such as obesity, diabetes mellitus, hypertension, cancer and cardiovascular diseases. The syndrome deserves great interest both in adults and children. Particularly, children with morbid obesity have a great tendency to develop the disease. The diagnostic decision is not so easy and may not be complete particularly in the pediatric population. Therefore, preventive measures should be considered at this stage. The aim of the study was to develop a MetS index capable of predicting MetS, while children are at the morbid obesity stage. This study was performed on morbid obese (MO) children, which were divided into two groups. MO children, who do not possess MetS criteria comprised the first group (n = 44). The second group was composed of children with MetS diagnosis (n = 42). Anthropometric measurements including weight, height, waist circumference (WC), hip C, head C, neck C, biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) and blood pressure measurements (systolic (SBP) and diastolic (DBP)) were performed. Body fat percentage (BFP) values were determined by TANITA’s Bioelectrical Impedance Analysis technology. Body mass index and MetS indices were calculated. Descriptive statistics including median values, t-test, Mann Whitney U test, correlation-regression analysis were performed within the scope of data evaluation using the statistical package program, SPSS. Statistically significant mean differences were determined by a p value smaller than 0.05. Median values for MetSI and ADMI in MO (MetS-) and MO (MetS+) groups were calculated as 25.9 and 36.5 and 74.0 and 106.1, respectively. Corresponding mean ± SD values for BFPs were 35.9 ± 7.1 and 38.2 ± 7.7 in groups. Correlation analysis of these two indices with corresponding general BFP values exhibited significant association with ADMI, close to significance with MetSI in MO group. Any significant correlation was found with neither of the indices in MetS group. In conclusion, important associations observed with MetS indices in MO group were quite meaningful. The presence of these associations in MO group was important for showing the tendency towards the development of MetS in MO (MetS-) participants. The other index, ADMI, was more helpful for predictive purpose.
Keywords: Body fat percentage, child obesity, metabolic syndrome index, morbid obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848715 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening
Authors: Chun-Lang Chang
Abstract:
According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.
Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18098714 Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir
Abstract:
This study concerned the dynamic behavior of the wind turbine rotor. Before all we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue, also studied the rotor with longitudinal crack in order to determine stress, strain and displacement. Firstly we compared the first six modes shapes between cracking and uncracking of HAWT rotor. Secondly we show show evolution of first six natural frequencies with longitudinal crack propagation. Finally we conclude that the residual change in the natural frequencies can be used as in shaft crack diagnosis predictive maintenance.
Keywords: Wind turbine rotor, natural frequencies, longitudinal crack growth, life time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22018713 Currency Exchange Rate Forecasts Using Quantile Regression
Authors: Yuzhi Cai
Abstract:
In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.Keywords: Exchange rate, quantile regression, combining forecasts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17848712 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31658711 The Design of PIP Controller for a Thermal System with Large Time Delay
Authors: Seiyed Hamid Zareh, Atabak Sarrafan, Kambiz Ghaemi Osgouie
Abstract:
This paper will first describe predictor controllers when the proportional-integral-derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, the predictor controllers are better than the PID controllers, then compares three types of predictor controllers. The value of these controller-s parameters are obtained by trial and error method, so here an effort has been made to obtain these parameters by Ziegler-Nichols method. Eventually in this paper Ziegler-Nichols method has been described and finally, a PIP controller has been designed for a thermal system, which circulates hot air to keep the temperature of a chamber constant.Keywords: Proportional-integral-predictive controller, Transferfunction, Delay time, Transport-lag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17998710 Biomechanics Analysis When Delivering Baby
Authors: Kristyanto B.
Abstract:
Plenty of analyses based on Biomechanics were carried out on many jobs in manufactures or services. Now Biomechanics analysis is being applied on mothers who are giving birth. The analysis conducted in terms of normal condition of the birth process without Gyn Bed (Obstetric Bed). The aim of analysis is to study whether it is risky or not when choosing the position of mother’s postures when delivering the baby. This investigation was applied on two positions that generally appear in common birth process. Results will show the analysis of both positions to support the birth process based on the Biomechanics analysis (Ergonomic approaches).
Keywords: Biomechanics analysis, Birth process, Position of postures analysis, Ergonomic approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23148709 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management
Authors: Arun Prasad Jaganathan
Abstract:
In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.
Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938708 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis
Authors: Reza Nadimi, Fariborz Jolai
Abstract:
This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24338707 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: Information theory, prediction model, prosthetic alignment, transtibial prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9488706 Echo State Networks for Arabic Phoneme Recognition
Authors: Nadia Hmad, Tony Allen
Abstract:
This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.
Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24148705 Control Technology for a Daily Load-following Operation in a Nuclear Power Plant
Authors: Keuk Jong Yu, Sang Hee Kang, Sung Chang You
Abstract:
In Korea, the technology of a load fo nuclear power plant has been being developed. automatic controller which is able to control temperature and axial power distribution was developed. identification algorithm and a model predictive contact former transforms the nuclear reactor status into numerically. And the latter uses them and ge manipulated values such as two kinds of control ro this automatic controller, the performance of a coperation was evaluated. As a result, the automatic generated model parameters of a nuclear react to nuclear reactor average temperature and axial power the desired targets during a daily load follow.Keywords: axial power distribution, model reactor temperature, system identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21748704 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20938703 Reductive Control in the Management of Redundant Actuation
Authors: Mkhinini Maher, Knani Jilani
Abstract:
We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented.
The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a « geometric ›› distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement.
Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.
Keywords: Mobile robot, actuation, redundancy, omnidirectional, inverse pseudo Moore-Penrose, reductive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17868702 Feasibility Analysis Studies on New National R&D Programs in Korea
Authors: Seongmin Yim, Hyun-Kyu Kang
Abstract:
As a part of evaluation system for R&D program, the Korean government has applied feasibility analysis since 2008. Various professionals put forth a great effort in order to catch up the high degree of freedom of R&D programs, and make contributions to evolving the feasibility analysis. We analyze diverse R&D programs from various viewpoints, such as technology, policy, and Economics, integrate the separate analysis, and finally arrive at a definite result; whether a program is feasible or unfeasible. This paper describes the concept and method of the feasibility analysis as a decision making tool. The analysis unit and content of each criterion, which are key elements in a comprehensive decision making structure, are examinedKeywords: Decision Making of New Government R&D Program, Feasibility Analysis Study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14178701 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).
Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5708700 A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range
Authors: Nasser Erfani Majd, Mojtaba Lotfizad
Abstract:
In this paper, an ultra low power and low jitter 12bit CMOS digitally controlled oscillator (DCO) design is presented. Based on a ring oscillator implemented with low power Schmitt trigger based inverters. Simulation of the proposed DCO using 32nm CMOS Predictive Transistor Model (PTM) achieves controllable frequency range of 550MHz~830MHz with a wide linearity and high resolution. Monte Carlo simulation demonstrates that the time-period jitter due to random power supply fluctuation is under 31ps and the power consumption is 0.5677mW at 750MHz with 1.2V power supply and 0.53-ps resolution. The proposed DCO has a good robustness to voltage and temperature variations and better linearity comparing to the conventional design.Keywords: digitally controlled oscillator (DCO), low power, jitter; good linearity, robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19198699 Effect of Body Size and Condition Factor on Whole Body Composition of Hybrid (Catla catla ♂x Labeo rohita ♀) from Pakistan
Authors: Muhammad Naeem, Abdus Salam, Muhammad Asghar Bashir, Abir Ishtiaq, Qurat-ul-Ane Gillani and Asma Salam
Abstract:
In the present study, 49 Hybrid (Catla catla ♂ x Labeo rohita ♀) were sampled from Al-Raheem Fish Hatchery, Village Ali Pure Shamali, Jhang Road, 18 Km from Muzaffar Garh using a cast net and Live fishes were transported to research laboratory. Mean percentage for water found 79.13 %, ash 6.58 %, fat 2.22 % and protein content 12.06 % in whole wet body weight. It was observed that body constituents were found increasing in the same proportion with an increase in body weight while significant proportional increase was observed with total length. However, condition factor remained insignificant (P>0.05) with body constituents.Keywords: Hybrid fish, Body composition, Condition factor, Predictive equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18208698 Aquatic Modeling: An Interplay between Scales
Authors: Christina G. Siontorou
Abstract:
This paper presents an integrated knowledge-based approach to multi-scale modeling of aquatic systems, with a view to enhancing predictive power and aiding environmental management and policy-making. The basic phases of this approach have been exemplified in the case of a bay in Saronicos Gulf (Attiki, Greece). The results showed a significant problem with rising phytoplankton blooms linked to excessive microbial growth, arisen mostly due to increased nitrogen inflows; therefore, the nitrification/denitrification processes of the benthic and water column sub-systems have provided the quality variables to be monitored for assessing environmental status. It is thereby demonstrated that the proposed approach facilitates modeling choices and implementation option decisions, while it provides substantial support for knowledge and experience capitalization in long-term water management.
Keywords: Aquatic ecosystem, integrated modeling, multi-scale modeling, ontological platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23388697 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.
Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19868696 Improving Taint Analysis of Android Applications Using Finite State Machines
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.Keywords: Android, static analysis, string analysis, taint analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6738695 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.
Keywords: Machine learning, text classification, NLP techniques, semantic representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858694 Prediction Heating Values of Lignocellulosics from Biomass Characteristics
Authors: Kaltima Phichai, Pornchanoke Pragrobpondee, Thaweesak Khumpart, Samorn Hirunpraditkoon
Abstract:
The paper provides biomasses characteristics by proximate analysis (volatile matter, fixed carbon and ash) and ultimate analysis (carbon, hydrogen, nitrogen and oxygen) for the prediction of the heating value equations. The heating value estimation of various biomasses can be used as an energy evaluation. Thirteen types of biomass were studied. Proximate analysis was investigated by mass loss method and infrared moisture analyzer. Ultimate analysis was analyzed by CHNO analyzer. The heating values varied from 15 to 22.4MJ kg-1. Correlations of the calculated heating value with proximate and ultimate analyses were undertaken using multiple regression analysis and summarized into three and two equations, respectively. Correlations based on proximate analysis illustrated that deviation of calculated heating values from experimental heating values was higher than the correlations based on ultimate analysis.
Keywords: Heating value equation, Proximate analysis, Ultimate analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37368693 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System
Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou
Abstract:
The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.
Keywords: Demand forecasting, machine learning, risk management, supply chain design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265