Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30077
Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: Information theory, prediction model, prosthetic alignment, transtibial prosthesis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132148

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439

References:


[1] S. Blumentritt, T. Schmalz, R. Jarasch, and M. Schneider, “Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads.,” Prosthet. Orthot. Int., vol. 23, no. 3, pp. 231–8, Dec. 1999.
[2] X. Jia, R. Wang, and W. Lee, “Effects of Shoe Heel Height on Loading and Muscle Activity for Trans-Tibial Amputees During Standing,” Tsinghua Sci. Technol., vol. 14, no. 3, pp. 281–286, Jun. 2009.
[3] M. S. Zahedi, W. D. Spence, S. E. Solomonidis, and J. P. Paul, “Alignment of lower-limb prostheses.,” J. Rehabil. Res. Dev., vol. 23, no. 2, pp. 2–19, Apr. 1986.
[4] L. A. Luengas, E. Camargo, and G. Sánchez, “Estudio de los rangos articulares en la bipedestación estática en personas normales vs . Amputados transtibiales,” Tecnura, vol. 17, pp. 60–68, 2013.
[5] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. July 1928, pp. 379–423, 1948.
[6] Novel.de, “The pedar® system.” (Online). Available: http://www.novel.de/novelcontent/pedar. (Accessed: 11-May-2014).
[7] Biometrics Ltd, “Biometrics Ltd.” (Online). Available: http://www.biometricsltd.com/. (Accessed: 01-Oct-2013).
[8] E. Isakov, J. Mizrahi, Z. Susak, I. Ona, and N. Hakim, “Influence of prosthesis alignment on the standing balance of below-knee amputees,” Clin. Biomech., vol. 9, no. 4, pp. 258–262, 1994.
[9] J. Viton, L. Mouchnino, M. L. Mille, M. Cincera, a. Delarque, a. Pedotti, a. Bardot, and J. Massion, “Equilibrium and movement control strategies in trans‐tibial amputees,” Prosthet. Orthot. Int., vol. 24, no. 2, pp. 108–116, Jan. 2000.
[10] D. Pyle, Data preparation for data mining. San Francisco: Morgan Kaufmann Publishers, Inc, 1999.
[11] M. Alvarez, J. Carrasco, and J. Marrtínez, “Combining techniques to find the number of bins for discretization,” in Jornadas Chilenas De Computación, 2013, pp. 1–4.
[12] M. Boulle, “Optimal bin number for equal frequency discretizations in supervized learning,” Intell. Data Anal., vol. 9, no. 2, pp. 175–188, 2005.
[13] R. Dash, R. L. Paramguru, and R. Dash, “Comparative Analysis of Supervised and Unsupervised Discretization Techniques,” Int. J. Adv. Sci. Technol., vol. 2, no. 3, pp. 29–37, 2011.
[14] G. P. Hughes, “On the Mean Accuracy of Statistical Pattern Recognizers,” Trans. Inf. THEORY, vol. 14, pp. 55–63, 1968.
[15] L. A. Luengas C., M. A. Gutierrez, and E. Camargo, Alineación De Prótesis Y Parámetros Biomecánicos De Pacientes Amputados Transtibiales. Bogota: UD Editorial, 2017.