Search results for: Aircraft Icing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 244

Search results for: Aircraft Icing

64 Concept for a Multidisciplinary Design Process–An Application on High Lift Systems

Authors: P. Zamov, H. Spangenberg

Abstract:

Presents a concept for a multidisciplinary process supporting effective task transitions between different technical domains during the architectural design stage. A system configuration challenge is the multifunctional driven increased solution space. As a consequence, more iteration is needed to find a global optimum, i.e. a compromise between involved disciplines without negative impact on development time. Since state of the art standards like ISO 15288 and VDI 2206 do not provide a detailed methodology on multidisciplinary design process, higher uncertainties regarding final specifications arise. This leads to the need of more detailed and standardized concepts or processes which could mitigate risks. The performed work is based on analysis of multidisciplinary interaction, of modeling and simulation techniques. To demonstrate and prove the applicability of the presented concept, it is applied to the design of aircraft high lift systems, in the context of the engineering disciplines kinematics, actuation, monitoring, installation and structure design.

Keywords: Systems engineering, multidisciplinary, architectural design, high lift system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
63 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik

Abstract:

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

Keywords: Flutter, unsteady forces, rotor blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
62 Transient Three Dimensional FE Modeling for Thermal Analysis of Pulsed Current Gas Tungsten Arc Welding of Aluminum Alloy

Authors: N. Karunakaran, V. Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of aluminum alloy plates by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTA welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was aluminum alloy AA 6351 T6, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from the study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: Gas tungsten arc welding, pulsed current, finite element analysis, thermal analysis, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
61 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: Monomial form, rectangular surfaces, CAGD curves, monomial matrix applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
60 Threats and Preventive Methods to Avoid Bird Strikes at the Deblin Military Airfield, Poland

Authors: J. Cwiklak, M. Grzegorzewski, M. Adamski

Abstract:

The paper presents results of the project conducted in Poland devoted to study on bird strikes at military airfields. The main aim of this project was to develop methods of aircraft protection against threats from birds. The studies were carried out using two methods. One by transect and the other one by selected sector scanning. During the research, it was recorded, that 104 species of birds in the number about of 36000 were observed. The most frequent ones were starling Sturnus vulgaris (31.0%), jackdaw Corvus monedula (18.3%), rook Corvus frugilegus (15.9 %), lapwing Vanellus vanellus (6.2%). Moreover, it was found, that starlings constituted the most serious threat. It resulted from their relatively high attendance at the runway (about 300 individuals). Possible repellent techniques concerning of the Deblin military airfield were discussed. The analysis of the birds’ concentration depending on the altitude, part of the day, year, part of the airfield constituted a base to work out critical flight phase and appropriate procedures to prevent bird strikes.

Keywords: Airport, bird strikes, flight safety, preventive methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
59 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.

Keywords: Forest wildfires, fuel volume estimation, 3D modeling, UAV, surveillance, firefighting, ignition detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
58 Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Keywords: Laser Beam Welding, dissimilar metals, SS/Al, Cu/Al and Ti/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
57 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
56 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
55 Multipurpose Three Dimensional Finite Element Procedure for Thermal Analysis in Pulsed Current Gas Tungsten Arc Welding of AZ 31B Magnesium Alloy Sheets

Authors: N.Karunakaran, V.Balasubramanian

Abstract:

This paper presents the results of a study aimed at establishing the temperature distribution during the welding of magnesium alloy sheets by Pulsed Current Gas Tungsten Arc Welding (PCGTAW) and Constant Current Gas Tungsten Arc Welding (CCGTAW) processes. Pulsing of the GTAW welding current influences the dimensions and solidification rate of the fused zone, it also reduces the weld pool volume hence a narrower bead. In this investigation, the base material considered was 2mm thin AZ 31 B magnesium alloy, which is finding use in aircraft, automobile and high-speed train components. A finite element analysis was carried out using ANSYS, and the results of the FEA were compared with the experimental results. It is evident from this study that the finite element analysis using ANSYS can be effectively used to model PCGTAW process for finding temperature distribution.

Keywords: gas tungsten arc welding, pulsed current, finiteelement analysis, thermal analysis, magnesium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
54 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
53 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
52 Unearthing Decisional Patterns of Air Traffic Control Officers from Simulator Data

Authors: Z. Zakaria, S. W. Lye, S. Endy

Abstract:

Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.

Keywords: Air traffic control strategies, conflict resolution, simulator data, strategy classification system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58
51 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4093
50 A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding

Authors: K. Kalaiselvan, K. Sekar, S. Elavarasi

Abstract:

The use of laser beam welding for joining titanium and aluminum offers more advantages compared with conventional joining processes. Dissimilar metal combination is very much needed for aircraft structural industries and research activities. The quality of a weld joint is directly influenced by the welding input parameters. The common problem that is faced by the manufactures is the control of the process parameters to obtain a good weld joint with minimal detrimental. To overcome this issue, various parameters can be preferred to obtain quality of weld joint. In this present study an overall literature review on processing parameters such as offset distance, welding speed, laser power, shielding gas and filler metals are discussed with the effects on quality weldment. Additionally, mechanical properties of welds joint are discussed. The aim of the report is to review the recent progress in the welding of dissimilar titanium (Ti) and aluminum (Al) alloys to provide a basis for follow up research.

Keywords: Laser beam welding, titanium, aluminum, process parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
49 A New Proportional - Pursuit Coupled Guidance Law with Actuator Delay Compensation

Authors: Chien-Chun Kung, Feng-Lung Chiang, Kuei-Yi Chen, Hsien-Wen Wei, Ming-Yi Huang, Cai-Ming Huang, Sheng-Kai Wang

Abstract:

The aim of this paper is to present a new three-dimensional proportional-pursuit coupled (PP) guidance law to track highly maneuverable aircraft. Utilizing a 3-D polar coordinate frame, the PP guidance law is formed by collecting proportional navigation guidance in Z-R plane and pursuit guidance in X-Y plane. Feedback linearization control method to solve the guidance accelerations is used to implement PP guidance. In order to compensate the actuator time delay, the time delay compensated version of PP guidance law (CPP) was derived and proved the effectiveness of modifying the problem of high acceleration in the final phase of pursuit guidance and improving the weak robustness of proportional navigation. The simulation results for intercepting Max G turn situation show that the proposed proportional-pursuit coupled guidance law guidance law with actuator delay compensation (CPP) possesses satisfactory robustness and performance.

Keywords: Feedback linearization control, time delay, guidance law, robustness, proportional navigation guidance, pursuit guidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877
48 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
47 Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Authors: M. Aruna, V. Dhanalaksmi

Abstract:

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Keywords: Inconel 718, Optimization, Response Surface Methodology (RSM), Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
46 Modeling of a Small Unmanned Aerial Vehicle

Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader

Abstract:

Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.

Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5611
45 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter

Abstract:

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Keywords: Composite, development, hybrid, innovation, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
44 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs

Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia

Abstract:

Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.

Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925
43 Stress Intensity Factors for Plates with Collinear and Non-Aligned Straight Cracks

Authors: Surendran M, Palani G. S, Nagesh R. Iyer

Abstract:

Multi-site damage (MSD) has been a challenge to aircraft, civil and power plant structures. In real life components are subjected to cracking at many vulnerable locations such as the bolt holes. However, we do not consider for the presence of multiple cracks. Unlike components with a single crack, these components are difficult to predict. When two cracks approach one another, their stress fields influence each other and produce enhancing or shielding effect depending on the position of the cracks. In the present study, numerical studies on fracture analysis have been conducted by using the developed code based on the modified virtual crack closure integral (MVCCI) technique and finite element analysis (FEA) software ABAQUS for computing SIF of plates with multiple cracks. Various parametric studies have been carried out and the results have been compared with literature where ever available and also with the solution, obtained by using ABAQUS. By conducting extensive numerical studies expressions for SIF have been obtained for collinear cracks and non-aligned cracks.

Keywords: Crack interaction, Fracture mechanics, Multiple site damage, stress intensity factor, collinear cracks, non-aligned cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
42 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
41 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids

Authors: Saqib Mahmood, Rolf Radespiel

Abstract:

This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .

Keywords: VGJ, Chimera Grid, DES, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
40 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
39 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, David Wallace, Chanyeop Park

Abstract:

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present an impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present an impulse current generator developed at the High Voltage Lab of Mississippi State University.

Keywords: impulse current generator, lightning, society of automotive engineers, capacitor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
38 Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools

Authors: Waqas Saleem, Fan Yuqing

Abstract:

A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.

Keywords: Structural optimization, Topology optimization, Shape optimization, Tail fin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
37 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: High-temperature starter-generator, More electrical engine, multi-criteria optimization, permanent magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
36 Pathological Truth: The Use of Forensic Science in Kenya’s Criminal Justice System

Authors: Peter Ndichu Muriuki

Abstract:

Assassination of politicians, school mass murders, purported suicides, aircraft crash, mass shootings by police, sinking of sea ferries, mysterious car accidents, mass fire deaths and horrificterror attacks are some of the cases that bring forth scientific and legal conflicts. Questions about truth, justice and human rights are raised by both victims and perpetrators/offenders as they seek to understand why and how it happened to them. This kind of questioning manifests itself in medical-criminological-legalpsychological and scientific realms. An agreement towards truthinvestigations for possible legal-political-psychological transitory issues such as prosecution, victim-offender mediation, healing, reconciliation, amnesty, reparation, restitution, and policy formulations is seen as one way of transforming these conflicts. Forensic scientists and pathologists in particular have formed professional groups where the complexities between legal truth and scientific truth are dramatized and elucidated within the anatomy of courtrooms. This paper focuses on how pathological truth and legal truth interact with each other in Kenya’s criminal justice system. 

Keywords: Forensic pathology, forensic science, pathological truth, truth investigations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4890
35 Environmental Capacity and Sustainability of European Regional Airports: A Case Study

Authors: Nicola Gualandi, Luca Mantecchini, Davide Serrau

Abstract:

Airport capacity has always been perceived in the traditional sense as the number of aircraft operations during a specified time corresponding to a tolerable level of average delay and it mostly depends on the airside characteristics, on the fleet mix variability and on the ATM. The adoption of the Directive 2002/30/EC in the EU countries drives the stakeholders to conceive airport capacity in a different way though. Airport capacity in this sense is fundamentally driven by environmental criteria, and since acoustical externalities represent the most important factors, those are the ones that could pose a serious threat to the growth of airports and to aviation market itself in the short-medium term. The importance of the regional airports in the deregulated market grew fast during the last decade since they represent spokes for network carriers and a preferential destination for low-fares carriers. Not only regional airports have witnessed a fast and unexpected growth in traffic but also a fast growth in the complaints for the nuisance by the people living near those airports. In this paper the results of a study conducted in cooperation with the airport of Bologna G. Marconi are presented in order to investigate airport acoustical capacity as a defacto constraint of airport growth.

Keywords: Airport acoustical capacity, airport noise, air traffic noise, sustainability of regional airports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656