Search results for: Long Short-Term Memory Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4306

Search results for: Long Short-Term Memory Network

2266 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
2265 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
2264 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia

Authors: A. Abdullah, A. Bakshwain, A. Aslam

Abstract:

Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous livestock population.

Keywords: Prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
2263 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema

Authors: Mario Mastriani

Abstract:

Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.

Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
2262 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
2261 Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods

Authors: Inseok Yeo, Tae-Ho Song

Abstract:

To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al-metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metalbarrier- added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for service life of more than 20 years.

Keywords: Vacuum insulation panels, Service life, Double enveloping, Metal-barrier-added enveloping, Edge conduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2260 Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Authors: Z. Salleh, M. N. Berhan, Koay Mei Hyie, D. H. Isaac

Abstract:

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Keywords: Kenaf, Fibreglass, Hybrid Composite, Tensile Strength, Tensile Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
2259 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

Authors: Zanariah Abdul Majid, Mohamed Suleiman

Abstract:

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Keywords: Numerical methods, parallel method, block method, higher order ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
2258 Humor Roles of Females in a Product Color Matrix

Authors: Jin-Tsann Yeh, Chyong-Ling Lin

Abstract:

Healthcare providers sometimes use the power of humor as a treatment and therapy for buffering mental health or easing mental disorders because humor can provide relief from distress and conflict. Humor is also very suitable for advertising because of similar benefits. This study carefully examines humor's widespread use in advertising and identifies relationships among humor mechanisms, female depictions, and product types. The purpose is to conceptualize how humor theories can be used not only to successfully define a product as fitting within one of four color categories of the product color matrix, but also to identify compelling contemporary female depictions through humor in ads. The results can offer an idealization for marketing managers and consumers to help them understand how female role depictions can be effectively used with humor in ads. The four propositions developed herein are derived from related literature, through the identification of marketing strategy formulations that achieve product memory enhancement by adopting humor mechanisms properly matched with female role depictions.

Keywords: Humor mechanisms, Female role depiction, Product types.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
2257 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
2256 Performance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm

Authors: N. P. Waweru, D. B. O. Konditi, P. K. Langat

Abstract:

Direction of Arrival estimation refers to defining a mathematical function called a pseudospectrum that gives an indication of the angle a signal is impinging on the antenna array. This estimation is an efficient method of improving the quality of service in a communication system by focusing the reception and transmission only in the estimated direction thereby increasing fidelity with a provision to suppress interferers. This improvement is largely dependent on the performance of the algorithm employed in the estimation. Many DOA algorithms exists amongst which are MUSIC, Root-MUSIC and ESPRIT. In this paper, performance of these three algorithms is analyzed in terms of complexity, accuracy as assessed and characterized by the CRLB and memory requirements in various environments and array sizes. It is found that the three algorithms are high resolution and dependent on the operating environment and the array size. 

Keywords: Direction of Arrival, Autocorrelation matrix, Eigenvalue decomposition, MUSIC, ESPRIT, CRLB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8762
2255 Bayesian Belief Networks for Test Driven Development

Authors: Vijayalakshmy Periaswamy S., Kevin McDaid

Abstract:

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2254 An Efficient Hardware Implementation of Extended and Fast Physical Addressing in Microprocessor-Based Systems Using Programmable Logic

Authors: Mountassar Maamoun, Abdelhamid Meraghni, Abdelhalim Benbelkacem, Daoud Berkani

Abstract:

This paper describes an efficient hardware implementation of a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique, based on the use of software/hardware system and a reduced physical address, enlarges the interfacing capacity of the microprocessor-based systems, uses the Direct Memory Access (DMA) to increases the frequency of the new bus, and improves the speed of data exchange. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus. A Xilinx Integrated Software Environment (ISE) 7.1i has been used for the programmable logic implementation.

Keywords: Interfacing, Software/hardware System, CPLD, programmable logic, DMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
2253 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
2252 Improvement of Voltage Profile of Grid Integrated Wind Distributed Generation by SVC

Authors: Fariba Shavakhi Zavareh, Hadi Fotoohabadi, Reza Sedaghati

Abstract:

Due to the continuous increment of the load demand, identification of weaker buses, improvement of voltage profile and power losses in the context of the voltage stability problems has become one of the major concerns for the larger, complex, interconnected power systems. The objective of this paper is to review the impact of Flexible AC Transmission System (FACTS) controller in Wind generators connected electrical network for maintaining voltage stability. Wind energy could be the growing renewable energy due to several advantages. The influence of wind generators on power quality is a significant issue; non uniform power production causes variations in system voltage and frequency. Therefore, wind farm requires high reactive power compensation; the advances in high power semiconducting devices have led to the development of FACTS. The FACTS devices such as for example SVC inject reactive power into the system which helps in maintaining a better voltage profile. The performance is evaluated on an IEEE 14 bus system, two wind generators are connected at low voltage buses to meet the increased load demand and SVC devices are integrated at the buses with wind generators to keep voltage stability. Power flows, nodal voltage magnitudes and angles of the power network are obtained by iterative solutions using MIPOWER.

Keywords: Voltage Profile, FACTS Device, SVC, Distributed Generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
2251 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2250 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
2249 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
2248 Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Keywords: Bi-directional associative memory, fuzzy cellular neuralnetworks, reaction-diffusion, delays, impulses, global exponentialstability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
2247 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.

Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
2246 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: Malware detection, network security, targeted attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6110
2245 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
2244 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: Congestion, ITS Strategies, Mobility, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
2243 Identifying Corporate Managerial Topics with Web Pages

Authors: Juan Llopis, Reyes Gonzalez, Jose Gasco

Abstract:

This paper has as its main aim to analyse how corporate web pages can become an essential tool in order to detect strategic trends by firms or sectors, and even a primary source for benchmarking. This technique has made it possible to identify the key issues in the strategic management of the most excellent large Spanish firms and also to describe trends in their long-range planning, a way of working that can be generalised to any country or firm group. More precisely, two objectives were sought. The first one consisted in showing the way in which corporate websites make it possible to obtain direct information about the strategic variables which can define firms. This tool is dynamic (since web pages are constantly updated) as well as direct and reliable, since the information comes from the firm itself, not from comments of third parties (such as journalists, academicians, consultants...). When this information is analysed for a group of firms, one can observe their characteristics in terms of both managerial tasks and business management. As for the second objective, the methodology proposed served to describe the corporate profile of the large Spanish enterprises included in the Ibex35 (the Ibex35 or Iberia Index is the reference index in the Spanish Stock Exchange and gathers periodically the 35 most outstanding Spanish firms). An attempt is therefore made to define the long-range planning that would be characteristic of the largest Spanish firms.

Keywords: Web Pages, Strategic Management, Corporate Description, Large Firms, Spain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2242 A New Method for Multiobjective Optimization Based on Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.

Keywords: Function optimization, Multiobjective optimization, Learning automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
2241 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems

Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi

Abstract:

The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.

Keywords: L1-cache, energy consumption, replacement policy, Instruction set architecture, multicore processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2240 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

Authors: Celso A. G. Santos, Paula K. M. M. Freire

Abstract:

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.

Keywords: rainfall data, urban center, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
2239 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications

Authors: Abdulnasir Hossen, Ulrich Heute

Abstract:

In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.

Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
2238 Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

Authors: N. Mahendran, R. Priya

Abstract:

The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following criteria: 1) The mobile users request the specific data to the cloud based on their present location. 2) Power consumption since most of them are equipped with non-rechargeable batteries. Mostly, the sensors are deployed in hazardous and remote areas. This paper focuses on above observations and introduces an approach known as collaborative location-based sleep scheduling (CLSS) scheme. Both awake and asleep status of each sensor node is dynamically devised by schedulers and the scheduling is done purely based on the of mobile users’ current location; in this manner, large amount of energy consumption is minimized at WSN. CLSS work depends on two different methods; CLSS1 scheme provides lower energy consumption and CLSS2 provides the scalability and robustness of the integrated WSN.

Keywords: Sleep scheduling, mobile cloud computing, wireless sensor network, integration, location, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
2237 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

Authors: Yung-Tien Liu, Chun-Chao Wang

Abstract:

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.

Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937