
Malware Beaconing Detection by Mining
Large-scale DNS Logs for Targeted Attack

Identification
Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract—One of the leading problems in Cyber Security today
is the emergence of targeted attacks conducted by adversaries with
access to sophisticated tools. These attacks usually steal senior level
employee system privileges, in order to gain unauthorized access to
confidential knowledge and valuable intellectual property. Malware
used for initial compromise of the systems are sophisticated and
may target zero-day vulnerabilities. In this work we utilize common
behaviour of malware called ”beacon”, which implies that infected
hosts communicate to Command and Control servers at regular
intervals that have relatively small time variations. By analysing
such beacon activity through passive network monitoring, it is
possible to detect potential malware infections. So, we focus on
time gaps as indicators of possible C2 activity in targeted enterprise
networks. We represent DNS log files as a graph, whose vertices
are destination domains and edges are timestamps. Then by using
four periodicity detection algorithms for each pair of internal-external
communications, we check timestamp sequences to identify the
beacon activities. Finally, based on the graph structure, we infer the
existence of other infected hosts and malicious domains enrolled in
the attack activities

Keywords—Malware detection, network security, targeted attack.

I. Introduction

TARGETED Attacks are a type of threat in which

actors actively pursue and compromise a target entity’s

infrastructure, while preserving anonymity [1]. In contrast to

Advanced Persistent Threat (APT) attacks, targeted attacks

are not carried by states; they have a rather narrow

scope and are performed by a community of attackers.

These attackers have a certain level of expertise and have

sufficient resources to conduct their activities over a long-term

period. They can adjust their attacks to counter the victim’s

defence. APT and Targeted Attacks have clearly proven

themselves capable of penetrating common security solutions

like anti-virus, intrusion detection systems and endpoint

protection software [2]. Moreover, they can remain undetected

for months at a time, all while siphoning off valuable

data or carrying out destructive actions. Using the Mandiant

Compromise assessment schema [3], attacks on networks

often consist of several main stages: Initial hosts compromise,

Downloading additional payload, Command and Control
(C2) communication, Steal target data. So, installation of a

conventional commercial anti-virus solution on a system is

A. Shalaginov, K. Franke, and X. Huang are with the Testimon Research
Group, Norwegian Information Security Laboratory, Faculty of Computer
Science and Media Technology, Gjøvik University College, Teknologivegen
22, P.O.Box 191, N2802 Gjøvik, Norway (phone: +47 61 13 53 75 ; e-mail:
andrii.shalaginov@hig.no).

not a sufficient safeguard against attack; it is also necessary to

incorporate network-related indicators of malware infections.

Current signature-based security solutions are only capable of

handling known threats that are based on the artefacts found

during malware sample analysis. Knowing this to be the case,

attackers are resorting to ever more sophisticated techniques

to evade detection and maintain persistence. Behaviour based

detection on network events might be able to unveil some

malicious activities unknown to traditional static analysis

methods, gut it is still susceptible to evasive measures. In this

work we consider C2 communication as a key indicator of

compromised systems.

The first objective of malware execution used in targeted

attacks is to exploit a specific vulnerability and establish

a privileged process in the target system. This process

downloads an additional malicious payload, which will

then attempt to contact the malicious C2 [4]. Additionally,

propagation of the access compromise beyond the target

system requires opening an external communications channel

to the C2 server. This behaviour will leave a record of

itself in network flow and DNS logs, which provides us

with a chance to identify the infected internal hosts and

external malicious domain names. Analysis of malware that

were previously identified in targeted attacks has uncovered

common behavioural characteristics exhibited by the infected

hosts’ ”beacons”. According to Trend Micro research in

detection of APT [5] the beacon in network traffic is(are)

communication packet(s) sent inside of the network at regular

intervals, which may be found using DNS requests or URLs.

Beacons can be used for a variety of purposes such as

obtaining new tasks from a C2 server, downloading updates,

etc. To evade detection, almost all malware will take some

measures to hide their footprint. In the compromised networks,

nearly all APT malware uses some form of obfuscation on

the outbound callback [5]. Additionally, they will not use

common blacklisted domains like ”.cn” or ”.ru”. Furthermore,

they do not fast-flux through the IP addresses. In many cases,

attackers use rented servers in legitimate data centers. They

can also use exploits deployed on whitelisted websites for

the first hop in C2. Such communication obfuscation is often

not a standard algorithm that can be decoded, but rather a

proprietary or an embedded steganographically into benign

objects. One example is the WEBC2 [6] backdoor family

used in an APT attack, which is capable of downloading

and executing a payload. Then, it attempts to communicate

with its C2 once a week (for example, Thursday at 10:00

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

743International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



AM). Command Five Pty Ltd [7] presented a report on

an investigation into several Advanced Thread Attacks in

2012, where they identified some malware that attempt to

communicate with their C2 infrastructure at frequent intervals.

This implies that beacon interval can reveal such regularities.

This paper is aimed at periodicity detection in timestamps

from large-scale enterprise DNS log data for malicious

communication detection. We pursue several goals: (i)

Timestamps analysis in DNS log files to identify malicious

beacons, (ii) Revealing potentially infected individual hosts

and the full scope of attack events based on the detected

beacons, (iii) Feasibility study of application of periodicity

algorithms for beacon detection with respect to speed and

obfuscation resilience. We also believe that higher frequency

beacon detection is enabled by their consistent in time series.

However, there are multiple challenges that are described

below. In addition, we implemented the experiments based

on Graphlab Create [8], which achieved near real time

processing and detection ability [9]. In contrast to Opreal

et al. [10], we present to apply periodicity detection, rather

than a belief propagation framework from graph theory. Using

such an approach, we are able to achieve high accuracy and

computational speed.

The paper is organised as follows. Section II presents

the state of art in malware beaconing. Section III explains

our targeted attack detection methodology, including data

pre-processing, the beacon detection module and the inference

module. Afterwards, the experiments are introduced in Section

IV which is followed by an analysis of the results in Section

V. Conclusions and discussions are given in Section VI.

II. Challenges with Zero-DayMalwares and Targeted

Attacks Detection

Network beaconing activity is prevalent in many

applications and protocols. For example, Network Time

Protocol (NTP) [11], Rich Site Summary (RSS) feeds [12],

automated software patching or updating that keep alive traffic

in long lived sessions may also appear as beacons. Therefore,

most of beacons are not malicious, while malicious beacons

are sourced from infected hosts where the malware repeatedly

attempts to establish remote connectivity with a malicious C2

server. Since malicious beacons only account a tiny part of all

beacons, this leads to a high false positive rate for malware

beacon detection methods. Additionally, not all malware

exhibits beacon behaviour during the infection process. Some

malware agents will randomise their communication intervals,

emulating legitimate communications behaviour. Others may

take advantage of multiple channels to hide by using a single

unique channel for a short period of time as described by van

Duijn [13], where PCAP files were used to detect beacons.

We do not consider malware with cloaking since this is out of

the scope of the paper. We believe that periodicity detection,

even obfuscated, may be a strong indicator of malware.

A. C2 in Malware Control

First, we need to understand how the beacons are

created and under which circumstances. Gu et al. [14]

studied two common methods of C2 communications: Push
and Pull. Push describes an active communication model

in which an attacker controls compromised hosts directly

through C2 server, while Pull refers to a passive mode, in

which the server periodically sends jobs to an attacker and

later retrieves the results. Furthermore, OpenDNS presented

following topologies in early 2000, commonly found in

C2 architectures [15]: Centralized, before 2003, includes a

single C2 server controlled by an attacker based on IRC

or HTTP/HTTPS protocols, Distributed, before 2006, binds

P2P peers that are able to communicated between each other

and C2 server, hybrid that are currently in use (like Zeus),

combines functionality of two previous topologies to create

more resilient and advanced model. According to the white

paper, DNS tunnelling has recently become popular in hybrid
architectures and it is considered to be relatively unexplored

area.

B. Case Study of Malware Beaconing

To understand the work mechanism of a beacon, we refer to

the user guide of beacon payload examples by Cobalt Strike

[16], which is a commercial product for modelling APT and

targeted attacks. For example, it can use the SMB protocol to

create a beacon that can also use protocols like HTTP or DNS.

Even through the concrete techniques used in target attacks

varies; the behaviour indicates similar properties, which could

let us understand beacons from a broader point of view. The

initial task is to start a beacon listener to use malicious payload

and specify the port number which used to transmit traffic, the

payload provides two communication channels. After a list

of domains are provided as described in Fig. 1, the malware

checks for tasks and downloads them over HTTP or DNS.

Fig. 1 Scheme of ”Beacon” payload as designed by Cobalt Strike [17]

Later, it goes through these domains each time it has to use

its beacon to signal back to C2. In case one domain fails or is

blocked, the malware will go to sleep and wait until the next

domain is available. Multiple domains or hosts use resilience

to network communication defence activity.

According to Cobalt Strike, one of the most important

malware functions is the specifically tuned sleep function,

which specifies how long the malware has to wait between

checks. The malware supports asynchronous and interactive
communications. Asynchronous communication is low and

slow, the malware will call back to the C2 server, download

the task and then go to sleep. Interactive communication is

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

744International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



frequent and fast, the malware communicates to the C2 server

in real time. These two types of communication methods are

defined by the sleep function. If the sleep time is set to 0

seconds, then the malware will beacon back to the C2 server

two times per second to maintain persistent communication.

Otherwise, if the sleep time is to non-zero, like 20 seconds,

then the malware will beacon every 20 seconds. What is more

interesting, the malware can vary these intervals, using 20%

jitter factor to vary the sleep time interval.
The above example only specifies one type of C2 server;

in order to improve persistent ability, Cobalt Strike also

provides distributed operation functionality, which means

multiple servers are involved in distributed beaconing. In this

case, it means multiple IP address. If a sub-group of C2 servers

failed, it is still hard to block all the malicious activities that

rely on other server. However, larger number of C2 servers

increases the probability of detection, because too frequent

connections may unveil the malicious footprint. This is also

called Low latency C2 due to its frequent beaconing. Thus

the author of the malware will usually prefer to have a sleep

time of no less than five minutes, while a longer sleep time is

even better. This long beacon interval behaviour is called High
latency C2, since longer beacon time leads to an inability to

detection it. This can be explained by the sparsity of malware

communication traffic in the context of a much higher number

of benign communication activities.

C. DNS Logs as a Source for Compromise Indicators
DNS can be considered as one of the malware beaconing

methods that is difficult to detect. The problem is related

to the fact that DNS server functionality is a core of the

Internet communication. The network communication is based

on the FQDN (fully qualified domain name) to ease human

memorizing and add a flexible level of topology abstraction.

According to the Google DNS tutorial [18], one of the main

DNS records is A that maps FQDN human-understanable

address to physical IP addresses. OpenDNS made a study [15]

in which DNS tunnelling was described as a contemporary

technique. When malware requests a host, the infected

machine sends a DNS query for an IP of C2 server to the

internal/external DNS. By returning the DNS response, C2

can send a TXT record that may consist of 184 bytes of

base63 encoded data as was studied by Farnham et al. at SANS

[19]. Therefore, it can be a potential way of hiding malware

job-scheduling. The advantage of this approach for an attacker

is that there is an enormous amount of benign DNS records,

which make it is difficult to detect malware communication.

Therefore, we can state that analysis of DNS logs need to

be done with respect to periodic communications to detect

possible targeted attacks and infected hosts. The following

challenges can be named:

1) The sleep time is not predictable. There is no preliminary

knowledge about the time when malware becomes active

and sends beacons.

2) Multiple period usage. Attackers utilise one time interval

for a period of time and then change to another time

interval under some logical event or scheduling, or even

use unique time intervals every time.

3) Time variation. Attackers take measures to prevent

detection of the connection/communication between the

compromised host and the C2 server, by varying the sleep

time to make it appear as if it were a known-to-be-good

communication. Command Five research made a study

on sequences of communications for different protocols

as presented in Fig. 2. We can see that experts have to

look into the logs to be able to detect such variations

manually.

Fig. 2 Common time intervals between communications used in different
attacks [20]

4) Noise. The target host can sleep for a short period of time,

while the malware can be asleep longer.

5) Multiple channels usage. A host may beacon to a single

server for a limited time and then shift to another server.

6) Benign beacon. Some benign applications, like system

updates or mailing clients, produce regular beacons.

7) Needle in a haystack. A large enterprise generates huge

amount of logs. So, tracking of a relatively minute

amount evidence within large scale DNS log files is

like looking for a needle in a haystack and there are

also time restrictions. IT security managers hope to

detect malicious activity as fast as possible and once the

malicious action has taken place, a warning should be

generated.

8) Near real time detection. Beacon detection is not aimed at

protection, yet identification of malicious beacon events

as soon as possible reduces costs for enterprise. It might

be hard to make it real time due to vast amount of network

traffic. Also because the malware only broadcasts back to

C2 servers after it has been launched, the deletion or theft

of data on the targeted network has already begun. Hence,

identifying malicious beacon events as soon as possible

helps to reduce defence costs for targeted enterprise.

We can see that the majority of these challenges can be met

by applying periodicity detection. However, many things need

to be considered when analysing real DNS logs.

D. Periodicity Detection in Communication

Periodicity detection and mining can be used in different

areas and represent a set of methods targeted at finding events

that happen frequently with some deviations according to

survey by Chitharanjan [21]. From the literature, we can see

that there can be found a number of works that apply beacon

detection in network traffic communication. Wang et al. [22]

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

745International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



proposed a circular autocorrelation based periodicity detection

algorithm to detect repeating communications. However, they

use a confidence value to evaluate detected events which will

cause high false positive rate. Qiao et al. [23] proposed a

method to detect P2P bots by mining the regional periodicity.

They applied the PARPER algorithm, which is also an

autocorrelation based algorithm, to identify the repeated events

launched by malware C2. Their work is the first mention of

a partial periodicity detection method that also handles noise.

Van [13] also used an autocorrelation method to detect beacon

events. Both methods examine all of the network traffic,

but they are unable to identify individual events with high

precision. The latest work by Parunak et al. [24] used a simple

mathematical method to identify beacon events, but their

method can only handle simple noise. However, their work is

the first to analyse beacon sleep time and they hold the opinion

that malware beacons can be differentiated from legitimate

beacons through the sleep time. To the authors’ knowledge,

there has not been any work done on the application of

symbolic periodicity detection for mining DNS logs with

the intent to detect and understand malicious beaconing.

Timestamps in DNS logs can also be considered as periodic

events that can be linked to targeted attacks and malware.

III. ProposedMethodology for Beaconing and Targeted

Attacks Detection

This section contains the insights into the proposed

methodology, including beacon detection and attack capture

modules. Our goal is to create methods for DNS log analysis

and events correlation. We present the following goals that

need to be achieved by our method:

1) Low Latency. We assume that the time interval of the

beacon is short enough that the infected hosts will

communicated with the C2 server several times (≥ 3) per

day. Hence, we look into data that was generated over a

whole one day to detect frequent beacon behaviour.

a) Detection on Single Host. Given any infected host, find

the malicious domain which the host beacons to. Then,

identify the other potential malicious domains involved

in the attack.

b) Detection on Entire Enterprise Network. Try to detect

attacks when no infected hosts are given on the selected

date.

2) High Latency. We only consider malware communication

at a fixed time every day, disregarding if it will

communicate to the C2 server afterwards. Hence, we

consider weekly data as a whole to detect high latency

beacons.

No matter which C2 communication method is used (push

or pull), the infected hosts will send feedback information to

the C2 server. This will leave evidence on the DNS query

record. Therefore we are only concerned with the A record

type DNS log (A record DNS corresponds to IPv4, which

is the IP address type most frequently utilized by attackers).

It demonstrates queries from the internal host to the internal

DNS server. However, the address queried from the internal

DNS server may either point to the internal client or to a

client outside enterprise. Thus, we extract logs that query

external client addresses through the internal DNS server. Our

suggested methodology is represented in Fig. 3. The purpose is

to present it as a framework, suitable for different enterprises.

Fig. 3 Proposed iterative methodology of attacks detection from DNS
A-records

The steps of the beacon detection in DNS logs are as

follows:

1) A-records extract only IPv4 addresses from the DNS

logs, since they are the most commonly used addresses.

TXT records and their content are beyond our scope for

now. The following 6 types of records are extracted:

Query from internal machine to internal DNS server,

from internal DNS server to internal DNS server, from

internal DNS server to external DNS server with three

corresponding responses.

2) The main task of data pre-processing is representing the

filtered log data as an undirected graph, which provides

an clear representation of the log file and communications

between internal hosts and external domains. The graph’s

vertices represent host IP address and domain names,

while each edge corresponds to one query from an

internal host to an external machine. The attribute of the

edge is the timestamp of the query. With this step, we

intend to decrease the extracted log size. We introduce

the ”degree” attribute, which is assigned to each domain

visited by internal hosts and records the number of

individual hosts in the enterprise that visited this domain.

We are only concerned by domains with a ”degree”
greater than 10. We think that domains visited by more

than 10 hosts in an enterprise is a benign domain, while

”degree” < 10 can be malicious. Even through there’s

a possibility that more than 10 hosts are infected in one

targeted attack, we believe that IT departments have the

ability to identify such large scale attack activities in an

enterprise. The results are put into Set 1 as sketched in

Fig. 4. So the ”degree” > 10 threshold works as a white

list and gets additional input from the Step 4.

3) Here we introduce another attribute, ”weight”, which

denotes the number of times the host queries the specific

domain. In this case, each domain has a ”degree” and

each individual host-domain pair has ”weight” attributes.

Then, we only take into consideration host-domain pairs

with ”weight” value greater than 3 and less than 100. The

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

746International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



Fig. 4 Example of content in Set 1, where ”degree” < 10

reason for this is that in real time processing mode, if a

host query to one domain more than 100 times during

a short time, we assume that such anomaly behaviour

will obviously detected by security products employed in

enterprise; for example, malware utilizing Domain name

Generation Algorithms (DGAs). Another concern is time

consumption, since it takes more time to identify beacons

from larger quantities of queries, we are planning to

implement our method on a parallel processing platform.

The results of this step are preprocessed data that are

placed in Set 2 as shown in Fig. 5.

Fig. 5 Example of content in Set 2, where any of the domains were visited
less than 10 times (”degree”< 10) and not connected to any hosts more than

3 times (”weight”< 10)

Then, an undirected graph is created to represent the

resulting log records along with information from Set 2.

It contains edges with the domains queried by its host 1, 2

or 3 times. We believe that a host, which exhibits beacon

behaviour, should connect to the C2 server for at least

4 times. Set 2 is only used when we consider data as a

stream and the content in this set will dynamically change

over time. However, when we look the entire day’s logs as

a whole, we do not have to be concerned with Set 2 since

we only need the corresponding edges whose weights are

greater than 3. After filtering with Set 1, we represent

our log data as an undirected graph which could help us

to easily understand and analyse the log file. The graph’s

vertices represent host IP address and domain names, one

edge corresponds to one query from an internal host to an

external machine. The attribute of the edge is the query’s

timestamp. Figs. 6 and 7 represent mappings of internal

to external hosts and graph representations, respectively.

4) The beacons are detected based on the resulting data and

represented by a graph.

5) By using expert knowledge, Set 3 is composed from

detected possible infected hosts. Set 3 is a list of beacons

detected, each beacon is a host-domain pair, which is

marked as malicious or benign.

Fig. 6 One domain may be linked with one or multiple hosts

Fig. 7 Subgraph for a specific host

A. Beacon Detection Method

Here, we describe the analysis of preprocessed ”suspicious”

timestamps for beacon detection, as well as the choice of

method, which includes four candidate periodicity detection

algorithms. Fig. 8 presents a diagram of the method.

Fig. 8 Periodicity detection method

1) Proposed Suspicious Periodicity Detection Methodology:
The following steps are proposed:

a) In order to check whether the time interval between two

consecutive queries repeats over time, each timestamp is

first transferred as the time elapsed from the beginning of

the log collection, or the beginning of the period of interest,

for the sake of maintaining a consistent the order of events.

b) When it is convenient to gather all the timestamps for

each pair host-domain, a sequence of query timestamps

could be represented by a vector which has length equal to

the number of queries minus one. For example, if a host

”1” queries to external machine ”A” for 14 times, then its

time interval sequence will be represented by a vector with

length 13.

c) To prevent detection, an attacker may deliberately add time

variations to the fixed sleep intervals, making the time

interval vector resemble a randomly generated number. In

order to tackle this problem, our idea is to treat all the

numbers which are approximately equal to each other as

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

747International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



equal numbers; this effectively smooths the time variation

within a certain scale. For instance, if 15 seconds time

variation is allowed in the case of 2,400 seconds sleep

intervals, then the entire time interval which is located

between 2,385 to 2,415 maps to 2,400.

d) Each digital number vector corresponds to a letter vector

in which different numbers are substituted by different

letters, similar letters are represented by a random letter.

A timestamp-letter transformation sequence is depicted in

Fig. 9. Since the periodicity detection algorithm requires

a different format of input: Letter or digital number, then

each digital number vector corresponds to a letter vector

in which different numbers are substituted by different

letters and similar letters are represented by a random letter.

For instance, (1,800, 1,800, 1,800, 3,600, 3600, 3,600) are

denoted in letter by vector (a,a,a,b,b,b) as well.

Fig. 9 Timestamps transformation in beacon detection method

e) The periodicity detection algorithm is applied to detect

whether there are suspicions domains that might be

beaconing to external hosts.

f) All infected domains are stored in the Set 3.

2) Choices of Periodicity Detection Algorithms: Four

algorithms were selected based on the literature review for

Beacon detection: Suffix Tree Based (STNR) [25], Dynamic

time warping based (WARP) [26] and Convolution based

(CONV) [27] by Mohamed G. Elfeky in 2005, Autocorrelation

based (PARPER) [28] by Christos Berberdisin in 2002. Given

a time sequence denoted by an alphabet vector, the sequence

is called symbol periodic if individual symbols are repeated

periodically. The sequence is called segment periodicity if

we can divide the sequence into several segments with same

length, and all of the segments are approximately or exactly the

same. Another type of periodicity is called partial periodicity,

if a pattern or a segment is only repeated periodically in a

consecutive segment of the sequence. Note that in our case,

a time sequence can be denoted by an alphabet vector. So,

our tasks are to identify whether this sequence has periodic

component sequences, what’s the period and the repeated

pattern, even if there’s noise in the sequence.

B. Attacks Event Detection Module Based on Beaconing

After the malicious beacon has been identified, this step

searchers for other infected hosts and potential malicious

domains related to the target attack. We classify a potential

malicious domain as a ”bridge domain” or a ”rare domain”,

as mentioned earlier. The rules for detecting malicious

domains and hosts are depicted in Fig. 10, (b) and as follows:

1) We assume that a host connected to a malicious domain

has been compromised directly or indirectly by the attack.

So all the hosts linked to domains which show malicious

beacon behaviour are considered infected hosts.

2) Domains lying on the shortest path and only connected

to the infected hosts are classified as ”bridge domains”.

This is where the shortest path is defined as the path that

relates two hosts through one domain vertex only.

3) There’s a group of domains that are only queried by

one potentially infected host and not visited by benign

host before the beacon take place. We name those

domains as ”rare domains”, which may be used to send

malicious e-mails or download additional malware to

bypass security checks before C2. So a large quantity of

”rare domains” may be malicious or benign. The purpose

of this step is to capture all malicious activity and to

narrow the analysis scale as much as possible.

Fig. 10 Structure of beacon interconnections

Suppose that a beacon between host 2 and domain c is

detected (the red dotted line), c is also connected to host 1

and 2 (red straight line); according to the rules, they are also

potentially infected hosts. Domain e is linked to host 1 and

4 (except domain c which is a beacon domain); therefore,

domain e is marked as a ”bridge domain”. Domains a and g
are linked to hosts 1 and 4 respectively, and do not have links

with other hosts; hence, we classify domains a and g as ”rare
domains”. Domains b and f are also linked with benign host

3, even though they link with infected host. So, we think that

such domains have less probability of being malicious.

IV. Experiments

This section the describes the experimental setup. We divide

all experiments into two major parts: (1) Selection of the best

periodicity detection algorithm for the described task, (2) Test

of the beaconing analysis in DNS log files, to find out the best

performing periodicity detection algorithm.

A. Experimental Design

To perform both sets of experiments we used the following

hardware. Periodicity detection algorithms were implemented

in Python and tested using MacBook Pro (4 cores CPU and

16 GB RAM memory). For the beacon detection (low latency

and high latency), we utilized the VDS server available at

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

748International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



the Testimon Research Group. It had 3 cores (6 threads)

of Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz, 32 GB of

quad-channel RAM Kingston PC-1600, Ubuntu 14.04 64 bit

installation on RAID SSD plus 2TB of HDD space for DNS

logs pre-processing. For the second part of the experiments,

we utilized the recently introduced framework GraphLab

developed by Low [29], which is a fast Machine Learning

tool with parallel processing capabilities. This is an important

tool for mining the connection between the internal addresses

and external hosts.

B. Experimental Data

The data we used are DNS logs of the Los Alamos National

Laboratory published in 2013 1. They are real logs from

a large web-site but sanitised to conceal their origin and

the actual referenced host names. Those logs contain name

resolution requests from several simulated attacks, and include

different stages of initial infection: Including initial callbacks,

downloads of additional malware and C2 callbacks. When we

worked on this paper, only 15 days of data (more than 400G)

were available, each day containing a simulated attack. The

IP address and domain name involved in the attack give label

information. Days 09/3, 10/3, 14/3, 15/3, 17/3, 18/3, 19/3,

20/3, 21/3 have only one IP address that was labeled as an

infected host. Days 07/3, 08/3, 11/3, 12/3, 13/3 have multiple

infected IP addresses given. Then, day 22/03 has no infected

host. For each of the 15 days, there are multiple malicious

domain names documented according to the simulated attack.

The task is to identify as much of the attack (infected hosts

and malicious domains) as possible. We are only concerned

with the A record DNS log, which corresponds to the most

frequently used IP address type utilized by attackers: IPv4.

It demonstrates queries from the internal host to the external

client address through internal DNS server. The main idea

of data pre-processing is to represent the filtered log data

as a undirected graph. The graph’s vertices represent host IP

addresses and domain names. One edge corresponds to one

query from the internal host to an external machine.

C. Reliability Test of Periodicity Detection Algorithms

According to the challenges mentioned in Section II, the

periodicity detection algorithm should be capable of detecting

not only a single period sequence, but also multiple period

sequences that includes noise. More specifically, we should

test the reliability of beacon detection algorithm with respect

to following requirements:

• Various types of periodicity. There are three kinds

of periodicity: Symbol periodicity, Partial periodicity,

Segment periodicity. Symbol periodicity means only one

symbol in the time sequence is periodic. For example,

in S = a f gathargaoka, only a repeats once every two

symbols. Partial periodicity means that only a part of the

sequence shows symbol periodicity. For example, we add

random letters in front of and at the end of sequence

S , giving us S = GHIa f gathargaokaQIO, now S has

1ftp://ftp.lanl.gov/public/pflarr/

a partial periodicity with the repeat pattern a starting

from position 3. Segment periodicity means the entire

sequence only contains a repeated pattern; for example,

S = abcabcabcabc, with repeat pattern abc which we call

a period. Segment periodicity may include the following

situations. (1) Some periods contain noise, while others

are clear periods; so we call it perfect periodicity. For

instance, in S = abdabcabcabc, the third position of

the first period is noise; when we change it to c, the

sequence will have perfect periodicity. However, if we

consider the period as ab which is a regular expression,

then the sequence S has perfect periodicity. (2) Another

situation is when the length of the period is one, which

means the sequence contains only one symbol, like S =
aaaaaaaaaa, this is a normal beacon with fixed sleep time

a and without time variation and noise.

• Various length of period. The length of the period could

be longer than one symbol. However, in real cases the

length of period is not predictable. Thus, the detection

algorithm should be capable of automatic detection of

various period lengths. For example, if the malware sets

two beacon time intervals, the algorithm should identify

the beacon time sequence, even if the time sequence is

S = abababababab or S = aaaaaaabbbbbbbb.

• Various length of sequence. The host-query-to-domain

time intervals could vary in a range from one to

thousands, which results in the length of time interval

sequence ranging from zero to thousands. In our

experiments, we only are concerned with the time interval

sequences that have length greater than 3 and less than

100. The algorithm should be able to detect beacons

of various sequence lengths and partial periodicity

or segment periodicity, independently of the symbol

periodicity.

• Various kind of noises. Noise complicates detection, more

specifically; it will reduce the true positive rate. However,

we need to control the detection rate even when the

time interval sequence contains noise. This is always

the case in real-world communications systems. In our

time variation smooth module, noise will be generated

artificially, based on a random noise process probability

distribution. Hence, periodicity detection algorithms

should have strong resilience to various types of noises,

which including substitution, insertion, deletion, and even

mixtures of periods.

• Time performance. Thereby, the time complexity of

detection algorithms should be as low as possible for the

sake of fast processing speed. A time interval sequence

could be a random sequence, a periodic sequence or

even a perfectly periodic sequence. Independently from

this fact, the longer the sequence, the more time will be

consumed. We implemented our experiments on a parallel

processing platform which will assign sequences with

different length and periodicity to different processors.

Thereby the time complexity of detection algorithm

should be as low as possible in order to achieve fastest

possible processing time.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

749International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



D. Low Latency Beacon

In the low latency beacon detection experiments, we looked

on the data as (1) a stream or as (2) a daily batch of data. Since

each day contains only one simulated attack, it means that all

of the documented attacks belong to low latency beacons (if

they have beacon behaviour). After the graph creation for an

entire day’s log file, the experiments are arranged as follows:

• Detection of on a single infected host. Given any one of

the infected hosts, detection of its beacon is an indicator

of malicious activity. For each given IP address, we

extract a subgraph that contains all the query logs that

belong to this host. For days 09/3, 10/3, 14/3, 15/3, 17/3,

18/3, 19/3, 20/3, 21/3, which only contain 1 infected host,

the subgraph contains vertices linked only to that host

directly. For other days, where multiple infected hosts

are documented, we choose any one host. Its subgraph

contains vertices which link to the given host through

less than four edges. It means that the distance between

vertices and a given host is less than 4. Afterwards, for

each domain vertex, we extract the processed time interval

sequence as the input to the selected periodicity detection

algorithm. If it shows beacon behaviour, an alert is raised.

Suppose that the beacon has been detected, the next step

is to use the detected beacon to find other infected hosts

(if exists) and malicious domains.

• Detection of attacks on entire enterprise network. In this

case, no preliminary knowledge is given, so we need to

detect the beacon and understand the malicious activity.

In this case, we will use all the data which documented

attack information as training data, while the last day

(22/3) is used as a test day and does not contain any

information regarding the attacks.

E. High Latency Beacon

This part of the experiments are used to understand high

latency beacons and test whether our methods are able to

detect them. 15 day’s data are divided into two group. The

1st group contains the first 9 days of log files, the 2nd one

contains the last 6 day’s data. The experiments are performed

in two parts. (1) For those 9 days, we first use 7 days as

training data, the 8th day as test data. Then, 8 days as training

data to test the 9th day’s data. (2) Further, the 9 days of data

are used to train our module, while last 6 day data are used

for testing. Similarly with the low latency beacon detection

scenario, a set of allowed time variations will be tested on all

the experiments.

V. Analysis of Results

This section aims at testing whether the periodicity detection

algorithms are able to handle the various beacon detection

challenges mentioned earlier. Comparisons between four

algorithms are presented and the best performing algorithm

will be applied in our beacon detection method. First, we

define Confidence in period detection as the evaluation criteria:

Con f idence =
number o f success f ull detections

total number o f detection
(1)

The value of the confidence will be in a range from 0.0 to

1.0. The higher the confidence value, the better the detection

algorithm performs.

A. Reliability of the Periodicity Detection Algorithms

In this experiment, we test reliability with various lengths

of period, which is set to a value in the range from

1 to 10. We generate this periodic sequence 11 times

using a random uniform distribution. For instance, if the

period is AB which has length 2, then the sequence will

be ABABABABABABABABABABAB. The experiments were

repeated 100 times, each time the length of period is fixed but

the content of the period is different. At the end, we count

the overall number of periods being detected and calculate the

Confidence value.

Then, we perform noise resilience tests with five types of

noise: replacement, insertion, deletion, mixture of insertion
and deletion, mixture of replacement, insertion and deletion.

The length of period is fixed to 5 and the elements of the

period are generated randomly from a uniform distribution as

well. Therefore, the total length of sequence is 50. The noised

components are randomly generated and added to random

positions. For example, if it is substitution noise and the

randomly generated position is 23, then the 23rd element in

the sequence will be replaced by another randomly generated

element which is totally different from all the other elements in

the sequence. The noise percentage increases gradually, until

it reaches 50%, which means there will be 24 elements added

to the original sequence. All experiments for resilience testing

were implemented 100 times. Fig. 11 shows the results of

these experiments.

Fig. 11 (a) indicates that all four algorithms are able to

detect different period lengths with confidence to almost 1.0.

Figs. 11 (b), (c) demonstrate the experiment results for noise

resilience testing. The abscissa represents the percentage of

noise added to the original sequence, the ordinate denotes the

Confidence, different algorithms are represented by different

markers. We can identify that STNR is the most reliable

algorithm against various types of noise and also various types

of periodicity.

B. Time Complexity Test

Three types of sequences are tested: Perfect periodicity with
one symbol, Perfect periodicity with multiple symbols in period
and Random generated sequence. The length of sequences

varied from 0 to 200. For the 1st and the 2nd type of the

sequences, the length was increased only a single time. For the

2nd type, a new period was added at the tail of the sequence

each time.

Fig. 12 illustrates our test results. The abscissa represents

the the length of sequence and the ordinate denotes the

time consumed in seconds. The first type of sequence is

perfect periodicity, which contains only one symbol and is

depicted in the sub-figure (a). For example, the sequence S =
AAAAAAAAAAAA. Second type of sequence in the sub-figure

(b) represents perfect segment periodicity, for instance, S =
ABCABCABCABC. The third sequence in the sub-figure (c) is

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

750International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



(a) Various length (b) Replacement (c) Insertion

(d) Deletion (e) Insertion + Deletion (f) Mixture of three noises

Fig. 11 Resilience to different types of noise

constructed with elements generated randomly from a uniform

distribution, like S = AJS DGAS GAKLDVOIER.

Obviously, STNR and PARPER are the fastest algorithms

against all three types of sequences. No matter what kind

of sequence it is, processing time increased along with the

increase in sequence length and a periodic sequence take less

time to detect than a random sequence. Especially for STNR,

when the length of sequence increases from 0 to 200, there’s

no significant difference in the processing time. To sum up,

STNR performs much faster and is more stable than others

based on this test. A comparison of complexity estimation for

the four algorithms is given in Table I.

TABLE I
Computational Complexity of the Periodicity Detection Algorithms

Algorithm STNR CONV WARP PARPER
Periodicity all type segment segment partial

Complexity O(n2) O(n · log2n) O(n2) O(n)
Time performance best average worse good
Noise resilience best worse worse average

C. Low Latency Beacon Detection

Here, we present the results of low latency beacon detection

based on the real DNS log data. We tested our method on 14

days’ worth of data (excluding the 15th day, which is used

to detect beacons on entire network). At the end, we detected

beacons in 11 of the given days. In the other three days, we

did not find out any beacons matching the documented attack,

but we detect other beacons in the infected hosts. Table V-C

lists the beacons we detected in each day. Column ”Day”

is the time when the log file was generated, ”IP” column

is the IP address of the infected host, ”Number of Beacon”

records the total number of beacons detected corresponding to

the infected hosts, the ”Sleep time” column is the fixed time

interval between each communication. If there is time variation

detected in the time sequence, ”yes” will be marked in time

variation column; this indicates that the time gap between each

two C2 varies slightly. The last column is the total number of

queries that were recorded in the DNS log file.

Looking at the sleep time column, we find that attackers

normally use only one fixed sleep interval for all infected

hosts. An exception can be seen in day 11, when the attacker

used slightly different sleep times for two infected hosts. For

the time variations in attacks, we find 8 out of 15 days are

using slight time variations. Since we set the allowed time

variation to 2 seconds, all the time variations are located in

range 0 to 2 seconds. However, it might be because an attacker

set the time variation deliberately or it was caused by a delay

in the package transfer between a router and a DNS server.

By designing an attack capture module into our method,

we detected 27 potentially infected hosts in total, while the

total number of documented infected hosts are 17. We also

found that if there are multiple machines enrolled in the

attack, like on days 07, 08, 11, 14, 15, 17, 21, then the

”bridge domains” that we defined are able to cover almost

all of the documented malicious domains. In addition, we

identified 6 extra suspicious beacon behaviours, in addition

to the documented attacks. The results are as in Table IV.

We also compared sleep time intervals used in each specific

attack. Only day 8 utilizes another unique sleep time, 1,863

seconds instead of 1,703. While days 14, 15 and 21 are using

the same sleep time as other C2 servers. Moreover, we tested

our method on an entire enterprise network instead of a single

host. The 14 day’s data are considered as training data, and the

last day’s data as test data. We detected 5,421 unique hosts that

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

751International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



(a) Perfect periodicity with one symbol (b) Perfect multi-symbol sequence (c) Random generated sequence

Fig. 12 Time performance test

TABLE II
Malicious Beacon Detected with 2s Time Variation

Day IP № of
Beacons

Malicious Domain Sleep Time Time
Variation

№ of Query

07 74.92.150.58 1 aftible.noe 2,700 yes 13
07 74.92.11.100 5 aftible.noe 2,700 yes 10
07 74.92.229.13 1 aftible.noe 2,700 yes 9
08 74.92.196.178 1 lisped.val 1,703 yes 30
08 74.92.16.82 1 lisped.val 1,703 yes 26
08 74.92.65.93 1 lisped.val 1,703 yes 19
09 74.92.112.52 1 misorganisation.noe 600 no 29
10 74.92.83.97 1 glazes.inkly.k3 1,500 no 4
11 74.92.65.93 1 mine.starving.wad.f8 1,700 yes 10
11 74.92.20.216 1 mine.starving.wad.f8 1,704 yes 30
14 74.92.4.129 1 winterwolf.dx 600 no 24
15 74.92.120.47 1 orfitals.ok 7,200 no 13
17 74.92.65.174 1 blerf.nc 1,783 no 9
19 74.92.144.170 1 rainbow-.c3 603 no 14
20 74.92.255.55 1 xu-l8jwcxetd.wad 1,100 no 13
21 74.92.159.71 1 carcasonne.b- 1200 no 17
Total 16 20 11 11 - -

TABLE III
Results for Entire Event Capture

Day Infected host ”Rare domains” ”Bridge domains”

07
74.92.150.58
74.92.229.13
74.92.11.100

124 2(2/3)

08
74.92.196.178
74.92.65.93
74.92.64.222

476 20(3/3)

09 74.92.112.52 174 0(0/3)
10 74.92.83.97 67 0(0/3)

11
74.92.65.93
74.92.20.216
74.92.159.71

48 3(3/3)

14
74.92.27.83
74.92.4.129
74.92.16.82

362 4(3/4)

15 74.92.120.47
74.92.175.4

142 9(3/3)

17 74.92.65.174
74.92.65.177

2(2/3) 1(1/3)

19 74.92.144.170 3(2/4) 0(0/4)
20 74.92.255.35 5(2/4) 0(0/4)

21 74.92.159.71
74.92.88.72

665 2(1/4)

beaconed to 40,377 unique domains in the training data, and

326 unique hosts beaconed to 1,649 unique domains in the test

data. This is quite a large number of beacons, which means that

beacons are very common behaviour in the network. Almost

every host has installed some application that shows beacon

behaviour. This creates a challenge in distinguishing malicious

and benign beacon.

In all previous experiments of low latency C2 detection,

we set allowed time variation to 2 seconds. Also there is

a possibility that an attacker sets higher time variations to

escape detection. Hence, we allowed time variations up to 10

seconds. Then, we detected 23 new beacons over all infected

hosts. Through we have no idea whether those domains are

malicious or not, it provides clues for identifying malicious

beacons within small scale data.

Further, we analysed the time intervals used in detected

beacons. Fig. 13 (a) gives a distribution of sleep times which

we detected, most of the sleep times are found in the range

2-1,000 and around 4,000 seconds. While Fig. 13 (b) gives

statistics for concrete sleep times, the most common beacon

sleep time is 2 seconds, which means that most applications

frequently call back to their server. Other less popular sleep

times are 3,600 seconds, 1,800 seconds, 7,200 seconds, and

900 seconds. This demonstrates that most benign applications

prefer to use Integer multiplier of 5 minutes or 30 minutes

doe call backs to their server.

We compared the most common sleep time intervals used in

benign beacons and malicious beacons detected in the dataset,

as presented in Fig. 14. Most of malware sleep time intervals

are contained in the benign interval.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

752International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



TABLE IV
Extra Infected Hosts Detected

Day IP Malicious Domain Sleep Time Time Variation Noise № of Query
08 74.92.64.222 lisped.val 1,863 no yes 47
14 74.92.16.82 winterwolf.dx 600 no no 57
14 74.92.27.83 winterwolf.dx 600 no yes 55
15 74.92.175.4 orfitals.ok 7,200 no no 6
15 74.92.244.3 orfitals.ok 7,200 no no 7
21 74.92.88.72 carcasonne.b- 1,200 no no 15

Total 6 4 4 - - -

TABLE V
Extra Beacon Detected with Time Variation to 10s

IP Domain Time interval sequence
74.92.120.47 cot.aac1axygu9l77nm7u.noe [3636, 3607, 3603, 3600, 3602, 3602, 3603, 4805, 3643]
74.92.83.97 aaqz7z-69qgdvzj.jeans.wad [606, 623, 605, 920, 606, 610, 621, 603 ... 614, ..., 605]
74.92.83.97 ac3ak6imsj62a.bernard.crus... [3639, 7260, 3606, 3744, 3691, 3636, 3609, 3666, 3664,...]

(a) Distribution of sleep time

(b) Frequency of sleep time

Fig. 13 Histogram frequencies of detected sleep times for low latency
beacons

We have found that attackers use sleep times similar to

benign applications, like 600 seconds, 1,200 seconds and 7,200

seconds. Some of the sleep times used in malware are identical

to benign applications, which means that we cannot distinguish

malware through beacon sleep time only. However, many

benign applications prefer to use a common sleep time, like

5 minutes, 30 minutes, 60 minutes or 120 minutes. On the

other hand, malware prefer to use some rare and uncommon

sleep time, even though we cannot identify malware through

its sleep time only. So, unusual sleep times may indicate a

malicious beacon.

Fig. 14 Sleep time intervals found for malicious and benign beacons, in
seconds

D. High Latency Beacon Detection

The last experiment was targeted on sleep time analysis in

high latency beacons. Days 8 to 14 were set as the first week

of data and days 9 to 15 as the second week. Allowed time

variations were limited to 60 seconds. Only the first connection

of each day is considered, because the first call back to server

for some malware (or benign application) may be at a fixed

time and afterwards creates call backs randomly. The results

are as Fig. 15 shows. For example, some applications may

check updates at a predefined time or call back to their server

once the host machine starts. However, some malware may

imitate those benign applications to hide their location. We

thought that if some new application or software called back

to one server at almost the same time every day, then this

application may be malware installed on the host, especially

for those hosts which do not update or install new applications

frequently, like a live server or a commonly used workstation.

E. Overall Performance of the Proposed Method

We implemented all experiments on the parallel processing

platform GraphLab, to be able to achieve fast processing

speed. The speed is almost always consistent (around 112,000

records), using on our hardware setup mentioned earlier,

regardless of the total number of events processed as given

in Table VI.

It can be seen that, on average, our method is able to

process 114,957 queries which contains 9,061 events per

second enrolled in beaconing. The average processing speed

for each day in DNS logs is shown in Fig. 16. We think that if

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

753International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



TABLE VI
Number of DNS Log Events and Time Spent for Processing per Each Day

Day № of DNS records № of beacon events Required time, sec
07 111,737,320 9,482,854 964
08 90,618,325 8,489,702 731
09 58,906,031 7,732,506 535
10 49,992,677 4,964,274 442
11 108,203,056 7,235,972 908
12 105,792,961 6,177,169 875
13 104,077,438 5,051,064 841
14 104,536,592 6,482,604 886
15 78,931,777 15,793,766 686
16 52,387,778 7,414,774 509
17 89,380,486 5,452,700 797
18 94,515,370 7,913,983 871
19 92,526,276 8,008,275 845
20 97,388,332 6,077,968 864
21 74,399,167 6,255,342 678

(a) Distribution of sleep time in week 1

(b) Distribution of sleep time in week 2

Fig. 15 Distribution of sleep time for high latency beacon

we use CPUs with more threads, like Xeon Phi, the speed will

increase further. But still there is a limitation on the number of

operations that can be run in parallel and network bandwidth.

We can state that such processing speed is relative fast and

might be considered as real-time performance.

VI. Conclusions

Our work reviewed the state of the art in the beacon

behaviour analysis for attacks detection in DNS log files.

Previously, only a few papers focused on beacon detection

and almost all of them did not pay attention to time variations

in beaconing. In this work, tactics used in beaconing and

beacon detection challenges were summarised and compared

Fig. 16 Comparison of average processing speed for each day

with various periodicity detection algorithms such as the

autocorrelation-based algorithms used in previous works.

We presented a malware beaconing detection method

which has not been presented before, to authors’ knowledge.

The experiment results demonstrate that a suffix tree-based

algorithm is the most reliable and fastest for beacon detection

and satisfy all specified requirements. Our method takes time

variation into account. Test results indicate that the method

can reliably handle large-scale time variations. Previous works

failed to detect 6 day’s beacon out of 15, while our work

detected more beacons, which could potentially originate from

infected hosts. These are the contributions by our attack

capture module. In addition, our experiments presented a

different view on differentiation between malicious beacons

and benign beacons, through sleep time analysis. It was shown

that an attacker may use the same sleep time intervals as

legitimate applications, yet an uncommon sleep time may

indicate the existence of malware. One of the future works

might be to create a bigger dataset which contains more attacks

and cover more tactics in beaconing.

Another contribution of our work is utilization of parallel

processing implementation using GraphLab library on a VDS

server. It is capable of near real-time DNS log processing. The

previous works did not pay much attention to this issue and

we think that developing fast and efficient beacon detection

mechanisms based on Machine Learning will benefit enterprise

security.

Acknowledgment

The authors would like to acknowledge the valuable

feedback provided by Dr. Carl Stuart Leichter. Also, the

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

754International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f



sponsorship and support from COINS Research School of

Computer and Information Security.

References

[1] “Targeted Attacks - Definition - Trend Micro USA.” http://www.
trendmicro.com/vinfo/us/security/definition/targeted-attacks. Access
date: 2015-02-27.

[2] “New anti-APT tools are no silver bullets: An independent test of APT
attack detection appliances | MRG Effitas Blog.” https://blog.mrg-effitas.
com/. Access date: 2015-05-24.

[3] “Compromise assessment,” tech. rep., Mandiant, https://dl.mandiant.
com/EE/assets/DS CompromiseAssessments 140207.pdf. accessed:
08.12.2015.

[4] “APT INFECTION DISCOVERY USING DNS
DATA[info:lanl-repo/lareport/LA-UR-13-23109].” http://permalink.
lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-23109,
2013. Access date: 2015-05-24.

[5] N. Villeneuve and J. Bennett, “Detecting apt activity with network traffic
analysis,” Trend Micro Incorporated, 2012.

[6] “contagio: Mandiant APT1 samples categorized by
malware families.” http://contagiodump.blogspot.no/2013/03/
mandiant-apt1-samples-categorized-by.html. Access date: 2015-05-24.

[7] “Command and Control in Fifth DomianCOMMAND FIVE PTY LTD
- Engineering Innovation | Research.” https://www.commandfive.com/
research.html, 2011. Access date: 2015-05-19.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learning,”
CoRR, vol. abs/1006.4990, 2010.

[9] X. Huang, “Understanding beacon for identifying targeted attack by
mining large-scale log data,” Master’s thesis, Gjøvik University College,
2015.

[10] A. Oprea, Z. Li, T.-F. Yen, S. Chin, and S. Alrwais, “Detection of
early-stage enterprise infection by mining large-scale log data,” arXiv
preprint arXiv:1411.5005, 2014.

[11] “NTP, Network Time Protocol.” http://support.ntp.org/bin/view/Main/
WebHome. Access date: 2015-05-19.

[12] “How to use RSS feeds | Digital Trends.” http://www.digitaltrends.com/
computing/how-to-use-rss/. Access date: 2015-05-19.

[13] L. van Duijn, “Research project-report beacon detection in pcap files,”
2014.

[14] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command
and control channels in network traffic,” 2008.

[15] “The role of dns in botnet command & control,” tech. rep.,
OpenDNS, http://info.opendns.com/rs/opendns/images/OpenDNS
SecurityWhitepaper-DNSRoleInBotnets.pdf, 2012.

[16] A. P. T. S. C. Strike. http://www.advancedpentest.com/. accessed:
10.12.2015.

[17] “Stealthy peer-to-peer c&c over smb pipes.” http://blog.cobaltstrike.com/
2013/12/06/stealthy-peer-to-peer-cc-over-smb-pipes/, December 2013.
accessed: 10.12.2015.

[18] Google, “Dns basics.” https://support.google.com/a/answer/48090?hl=
en. accessed: 12.12.2015.

[19] G. Farnham and A. Atlasis, “Sans: Detecting dns
tunneling.” https://www.sans.org/reading-room/whitepapers/dns/
detecting-dns-tunneling-34152, February 2013. accessed: 08.12.2015.

[20] C. F. P. Ltd, “Command and control in the fifth domain.” https:
//www.commandfive.com/papers/C5 APT C2InTheFifthDomain.pdf,
February 2012. accesed: 11.09.2015.

[21] K. Chitharanjan, “Periodicity detection algorithms in time series
databases-a survey,” International Journal of Computer Science &
Engineering Technology, 2013.

[22] B. Wang, Z. Li, D. Li, F. Liu, and H. Chen, “Modeling connections
behavior for web-based bots detection,” in e-Business and Information
System Security (EBISS), 2010 2nd International Conference on, pp. 1–4,
IEEE, 2010.

[23] Y. Qiao, Y.-x. Yang, J. He, C. Tang, and Y.-z. Zeng, “Detecting p2p
bots by mining the regional periodicity,” Journal of Zhejiang University
SCIENCE C, vol. 14, no. 9, pp. 682–700, 2013.

[24] H. V. D. Parunak, A. Nickels, and R. Frederiksen, “An agent-based
framework for dynamical understanding of dns events,” 2014.

[25] F. Rasheed and R. Alhajj, “Stnr: A suffix tree based noise resilient
algorithm for periodicity detection in time series databases,” Applied
Intelligence, vol. 32, no. 3, pp. 267–278, 2010.

[26] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Warp: time warping
for periodicity detection,” in Data Mining, Fifth IEEE International
Conference on, pp. 8–pp, IEEE, 2005.

[27] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, “Periodicity detection
in time series databases,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 17, no. 7, pp. 875–887, 2005.

[28] C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, A. K. Elmagarmid,
et al., “Multiple and partial periodicity mining in time series databases,”
in ECAI, vol. 2, pp. 370–374, 2002.

[29] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,
and J. Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:10, No:4, 2016 

755International Scholarly and Scientific Research & Innovation 10(4) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
4,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
24

2.
pd

f


